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Abstract

In this work we investigate on the concept of “restraining
bolt”, envisioned in Science Fiction. Specifically we intro-
duce a novel problem in AI. We have two distinct sets of
features extracted from the world, one by the agent and one
by the authority imposing restraining specifications (the “re-
straining bolt”). The two sets are apparently unrelated since
of interest to independent parties, however they both account
for (aspects of) the same world. We consider the case in which
the agent is a reinforcement learning agent on the first set of
features, while the restraining bolt is specified logically using
linear time logic on finite traces LTLf /LDLf over the second
set of features. We show formally, and illustrate with exam-
ples, that, under general circumstances, the agent can learn
while shaping its goals to suitably conform (as much as pos-
sible) to the restraining bolt specifications.

Introduction
This work starts a scientific investigation on the concept of
“restraining bolt”, as envisioned in Science Fiction. A re-
straining bolt is a “device that restricts a droid’s [agent’s]
actions when connected to its systems. Droid owners in-
stall restraining bolts to limit actions to a set of desired be-
haviors.”1 The concept of restraining bolt introduces a new
problem in AI. We have two distinct representations of the
world, one by the agent and one by the authority imposing
restraining specifications, i.e., the bolt. Such representations
are apparently unrelated as developed by independent par-
ties, but both model (aspects of) the same world. We want
the agent to conform (as much as possible) to the restraining
specifications, even if these are not expressed in terms of the
agent’s world representation.

Studying this problem from a classical Knowledge Repre-
sentation perspective (Reiter 2001) would require to estab-
lish some sort of “glue” between the representation by the
agent and that by the restraining bolt. Instead, we bypass
dealing with such a “glue” by studying this problem in the
context of Reinforcement Learning (RL) (Puterman 1994;
Sutton and Barto 1998), which is currently of great inter-
est to develop components with forms of decision making,
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1https://www.starwars.com/databank/
restraining-bolt

possibly coupled with deep learning techniques (Mnih et al.
2015; Silver et al. 2017).

Specifically, we consider an agent and a restraining bolt of
different nature. The agent is a reinforcement learning agent
whose “model” of the world is a hidden, factorized, Markov
Decision Processes (MDP) over a certain set of world fea-
tures. That is, the state is factorized in a set of features
observable to the agent, while transition function and re-
ward function are hidden. The restraining bolt consists in a
logical specification of traces that are considered desirable.
The world features that are used represent states in these
traces are disjoint from those used by the agent. More con-
cretely such specifications are expressed in full-fledged tem-
poral logics over finite traces, LTLf and its extension LDLf
(De Giacomo and Vardi 2013; De Giacomo and Rubin 2018;
Brafman, De Giacomo, and Patrizi 2018). Notice that the re-
straining bolt does not have an explicit model of the dynam-
ics of the world, nor of the agent. Still it can assess if a given
trace generated by the execution of the agent in the world is
desiderabile, and give additional rewards when it does.

The connection between the agent and the restraining bolt
is loose: the bolt provides additional reward to the agent and
only needs to know the order of magnitude of the original re-
wards of the agent to suitably fix a scaling factor2 for its own
additional rewards. In addition, it provides to the agent ad-
ditional features to allow the agent to know at what stage of
the satisfaction of temporal formulas the world is so that the
agent can choose its policy accordingly. Without them, the
agent would not be able to act differently at different stages
to get the rewards according to the temporal specifications.

The main result of this paper is that, in spite of the loose
connection between the two models, under general circum-
stances, the agent can learn to act so as to conform as much
as possible to the LTLf /LDLf specifications. Observe that we
deal with two separate representations (i.e., two distinct sets
of features), one for the agent and one for the bolt, which are
apparently unrelated, but in reality, correlated by the world
itself, cf., (Brooks 1991). The crucial point is that, in order
to perform RL effectively in presence of a restraining bolt
such a correlation does not need to be formalized.

For example, consider a service robot serving drinks and

2Note that finding the right scaling factor is an importan issue
in RL (Simsek and Barto 2006), but out of the scope of the paper.



snacks at a party. The robot knows the locations where it
can grasp drink and snack items and the locations of peo-
ple that can receive such items. The robot can execute ac-
tions to move in the environment, to grasp objects and to
deliver them to people. With rewards associated to effec-
tive deliver, the robot can learn how to serve something to
a specific person. Now, suppose we want to impose the fol-
lowing restraining bolt specification: serve exactly one drink
and one snack to every person, and do not serve alcoholic
drinks to minors. To express this specification (e.g., as an
LTLf /LDLf formula), a representation of the status of each
person (i.e., identity, age and received items) is needed, even
though these features are not available to the learning agent
(but only to the restraining bolt).

Notice that the presence of LTLf /LDLf specification
makes the whole system formed by the agent and the re-
straining bolt non-Markovian. Recently, interest in non-
Markovian Reward Decision Processes NMRDPs (Bacchus,
Boutilier, and Grove 1996; Whitehead and Lin 1995), and
in particular on expressing rewards using linear-time tem-
poral logic has been revived and motivated by the difficulty
in rewarding complex behaviors directly on MDPs (Littman
2015; Littman et al. 2017). In this context, the use of linear
time logics over finite traces such as LTLf or its extension
LDLf has been recently advocated (Camacho et al. 2017;
Brafman, De Giacomo, and Patrizi 2018; Icarte et al. 2018).
Notably, both LTLf and LDLf formulas can be transformed
into deterministic finite state automata tracking the stage of
satisfaction of the formulas (De Giacomo and Vardi 2013).
This, in turn, allows for transforming an NMRDP with non-
Markovian LTLf /LDLf rewards into an equivalent MDP over
an extended state space, obtained as the crossproduct of the
states of the NMRDP and the states of the automaton. This
transformation is of particular interest in RL with temporally
specified rewards expressed in LTLf /LDLf , since it allows to
do RL on an equivalent MDP whose (optimal) policies are
also (optimal) policies for the original problem, and vicev-
ersa (Brafman, De Giacomo, and Patrizi 2018). This pro-
vides the basis for our development here.

In this paper, we set the framework for the problem of re-
straining bolt in RL context and provide proofs and practical
evidence, through various examples, that an RL agent can
learn policies that optimize conformance to the LTLf /LDLf
restraining specifications, without including in the agent’s
state space representation the features needed to evaluate the
LTLf /LDLf formula. Our work can also be seen as a con-
tribution to the research providing safety guarantees to AI
techniques based on learning. We take up this point in a brief
discussion at the end of the paper.

Preliminaries
MDP’s. A Markov Decision Process (MDP) M =
〈S,A, Tr,R〉 contains a set S of states, which in this paper
we consider factored into world features, a set A of actions,
a transition function Tr : S×A→ Prob(S) that returns for
every state s and action a a distribution over the next state,
and a reward function R : S×A×S → R that specifies the
reward (a real value) received by the agent when transition-
ing from state s to state s′ by applying action a. A solution

to an MDP is a function, called a policy, assigning an ac-
tion to each state, possibly conditioned on past states and
actions. The value of a policy ρ at state s, denoted vρ(s),
is the expected sum of (possibly discounted by a factor γ,
with 0 ≤ γ 1) rewards when starting at state s and selecting
actions based on ρ.

RL is the task of learning a possibly optimal policy, from
an initial state s0, on an MDP where only S and A are
known, while Tr and R are not. Typically, the MDP is as-
sumed to start in an initial state s0, so policy optimality is
evaluated wrt vρ(s0). Every MDP has an optimal policy ρ∗.
In discounted cumulative settings, there exists an optimal
policy that is Markovian ρ : S → A, i.e., ρ depends only
on the current state, and deterministic (Puterman 1994).

LTLf /LDLf . The logic LTLf is the classical linear time
logic LTL (Pnueli 1977) interpreted over finite traces, formed
by a finite (instead of infinite, as in LTL) sequence of propo-
sitional interpretations(De Giacomo and Vardi 2013). Given
a set P of boolean propositions, here called fluents (Reiter
2001), LTLf formulas ϕ are defined as follows:

ϕ ::= φ | ¬ϕ | ϕ1 ∧ ϕ2 | ◦ϕ | ϕ1 U ϕ2

where φ is a propositional formula over P , ◦ is the next
operator and U is the until operator. We use the standard
abbreviations: ϕ1 ∨ ϕ2

.
= ¬(¬ϕ1 ∧ ¬ϕ2); eventually as

3ϕ
.
= true U ϕ; always as 2ϕ

.
= ¬3¬ϕ; week next

•ϕ .
= ¬◦¬ϕ (note that on finite traces ¬◦ϕ 6≡ ◦¬ϕ);

and Last .
= •false denoting the end of the trace. LTLf is

as expressive as first-order logic (FO) over finite traces and
star-free regular expressions (RE).

LDLf is a proper extension of LTLf , which is as expres-
sive as monadic second-order logic (MSO) over finite traces
(De Giacomo and Vardi 2013). LDLf allows for expressing
regular expressions over such sequences, hence mixing pro-
cedural and declarative specifications, as advocated in some
work in Reasoning about Action and Planning (Levesque et
al. 1997; Baier et al. 2008). Formally, LDLf formulas ϕ are
built as follows:

ϕ ::= tt | ¬ϕ | ϕ1 ∧ ϕ2 | 〈%〉ϕ
% ::= φ | ϕ? | %1 + %2 | %1; %2 | %∗

where: tt stands for logical true; φ is a propositional for-
mula overP; % denotes path expressions, i.e., RE over propo-
sitional formulas φ with the addition of the test construct
ϕ? typical of Propositional Dynamic Logic (PDL). We use
abbreviations [%]ϕ

.
= ¬〈%〉¬ϕ as in PDL. Intuitively, 〈%〉ϕ

states that, from the current step in the trace, there exists an
execution satisfying the RE % such that its last step satisfies
ϕ, while [%]ϕ states that, from the current step, all execu-
tions satisfying the RE % are such that their last step satisfies
ϕ. Tests are used to insert into the execution path checks for
satisfaction of additional LDLf formulas.

For an LTLf /LDLf formula ϕ, we can construct a deter-
ministic finite state automaton (DFA) (Rabin and Scott 1959)
Aϕ that tracks satisfaction of ϕ: Aϕ accepts a finite trace π
iff π satisfies ϕ.3

3An analogous transformation to automata applies to several



NMRDP’s. A non-Markovian reward decision process
(NMRDP) (Bacchus, Boutilier, and Grove 1996) is a tu-
ple M = 〈S,A, Tr, R̄〉, where S,A and Tr are as in
an MDP, but the reward R̄ is a real-valued function over
finite state-action sequences (referred to as traces), i.e.,
R̄ : (S × A)∗ → R. Given a (possibly infinite) trace
π = 〈s0, a1, . . . , sn−1, an〉, the value of π is: v(π) =∑|π|
i=1 γ

i−1R̄(〈π(1), π(2), . . . , π(i)〉), where 0 < γ ≤ 1 is
the discount factor and π(i) denotes the pair (si−1, ai). In
NMRDP’s, policies are also non-Markovian ρ̄ : S∗ → A.
Since every policy induces a distribution over the set of pos-
sible infinite traces, we can define the value of a policy ρ̄,
given an initial state s, as: vρ̄(s) = Eπ∼M,ρ̄,sv(π). That
is, vρ̄(s) is the expected value of infinite traces, where the
distribution over traces is defined by the initial state s, the
transition function Tr, and the policy ρ̄.

Specifying a non-Markovian reward function explicitly is
cumbersome and unintuitive, even if only a finite number
of traces are to be rewarded. LTLf /LDLf provides an intu-
itive and convenient language rewards (Alberto et al. 2017;
Brafman, De Giacomo, and Patrizi 2018). Following, (Braf-
man, De Giacomo, and Patrizi 2018) we can specify R̄
implicitly, using a set of pairs {(ϕi, ri)}mi=1, with ϕi an
LTLf /LDLf formula selecting the traces to reward, and ri
the reward assigned to those traces, where the atomic propo-
sitions, i.e., the fluents, of ϕi correspond to boolean fea-
tures, or boolean propositions (e.g., relational value com-
parison) over the world features, forming the components
of the state vector. Intuitively, if the current (partial) trace
is π = 〈s0, a1, . . . , sn−1, an〉, the agent receives at sn a re-
ward r if ϕi is satisfied by π. Formally, R̄(π) = r if π |= ϕ
and R̄(π) = 0, otherwise.

NMRDP with LTLf /LDLf rewards
Before looking at the restraining bolt problem, we review
RL for NMRDP’s with LTLf /LDLf rewards.

In (Brafman, De Giacomo, and Patrizi 2018) it is shown
that for any NMRDP M = 〈S,A, Tr, {(ϕi, ri)}mi=1〉, there
exists an MDP M ′ = 〈S′, A, Tr′, R′〉 that is equivalent to
M in the sense that the states of M can be (injectively)
mapped into those of M ′ in such a way that correspond-
ing (under the mapping) states yield same transition proba-
bilities, and corresponding traces have same rewards (Bac-
chus, Boutilier, and Grove 1996). Denoting with Aϕi =
〈2P , Qi, qi0, δi, Fi〉 (notice that S ⊆ 2P and δi is total) the
DFA associated with ϕi, the equivalent MDP M ′ is as fol-
lows:

• S′ = Q1 × · · · ×Qm × S;
• Tr ′ : S′ ×A× S′ → [0, 1] is defined as:

Tr ′(q1, . . . , qm, s, a, q
′
1, . . . , q

′
m, s

′) ={
Tr(s, a, s′) if ∀i : δi(qi, s

′) = q′i
0 otherwise;

other formalisms for representing temporal specifications over
finite traces, including Past LTL, co-safe LTL, etc. (Bacchus,
Boutilier, and Grove 1996; Thiébaux et al. 2006; Slaney 2005;
Gretton 2007; 2014; Lacerda, Parker, and Hawes 2014; 2015). All
results presented here apply to those formalisms as well.

• R′ : S′ ×A× S′ → R is defined as:

R′(q1, . . . , qm, s, a, q
′
1, . . . , q

′
m, s

′) =
∑

i:q′i∈Fi

ri

Observe that the state space of M ′ is the product of the state
spaces of M and Aϕi

, and that the reward R′ is Markovian.
In other words, the (stateful) structure of the LTLf /LDLf for-
mulas ϕi used in the (non-Markovian) reward of M is com-
piled into the states of M ′.

Theorem 1 ((Brafman, De Giacomo, and Patrizi 2018)).
The NMRDP M = 〈S,A, Tr, {(ϕi, ri)}mi=1〉 is equivalent
to the MDP M ′ = 〈S′, A, Tr′, R′〉 defined above.

Actually this theorem can be refined, into a stronger
lemma that we will use in the following. A policy ρ for an
NMRDP M and a policy ρ′ for an equivalent MDP M ′ are
equivalent if they guarantee the same rewards. Assume M ′
is constructed as above and let ρ′ be a policy for M ′. Con-
sider a trace π = 〈s0, a1, s1, . . . , sn−1, an〉 of M and as-
sume it leads to state sn. Further, let qi be the state of Aϕi

on input π. We define the (non-Markovian) policy ρ̄ equiv-
alent to ρ′ as ρ̄(π) = ρ′(q1, . . . , qm, sn). Similarly, given a
policy ρ for M , by just tracking the state of the DFAs Aϕi

,
it is immediate to define the equivalent policy ρ′ for M ′.
Hence we have:

Lemma 2 ((Brafman, De Giacomo, and Patrizi 2018)).
Given an NMRDP M and an equivalent MDP M ′, every
policy ρ′ forM ′ has an equivalent policy ρ̄ forM and vicev-
ersa.4

RL for NMRDP with LTLf /LDLf rewards
We are interested in RL in the setting introduced above:
learn a (possibly optimal) policy for an NMRDP M =
〈S,A, Tr, {(ϕi, ri)}mi=1〉, whose rewards ri are offered on
traces specified by LTLf /LDLf formulas ϕi and where the
LTLf /LDLf reward formulas {(ϕi, ri)}mi=1 and the transi-
tions function Tr is hidden to the learning agent.5 Formally,
given M , with Tr and {(ϕi, ri)}mi=1 hidden to the learn-
ing agent but sampled during learning, and an initial state
s0 ∈ S, the RL problem over M consists in learning an op-
timal policy ρ̄. Notice that, since NMRDP rewards are based
on traces, instead of state-action pairs, typical learning al-
gorithms, such as Q-learning or SARSA (Sutton and Barto
1998), which are based on MDPs, are not applicable. How-
ever, by the above results an optimal policy for M can be
obtained by learning, instead, an optimal policy for M ′. Be-
ing M ′ an MDP, this can be done by typical algorithms such
as Q-learning or SARSA. Of course, neither M nor M ′ are
(completely) known to the learning agent, and the transfor-
mation is never done explicitly. Rather, during the learning
process, the agent assumes that the underlying model has the
form of M ′ instead of that of M .

4A variant of this lemma, talking about optimal policy only as
originally presented in (Bacchus, Boutilier, and Grove 1996).

5Observe that ϕi is over all world features, since we do not
distinguish agent features from restraining bolt features yet.
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Figure 1: Learning Agent and Restraining Bolt

Theorem 3. RL for LTLf /LDLf rewards over an NMRDP
M = 〈S,A, Tr, {(ϕi, ri)}mi=1〉, with Tr and {(ϕi, ri)}mi=1
hidden to the learning agent can be reduced to RL over the
MDPM ′ = 〈S′, A, Tr′, R′〉 defined above, with Tr′ andR′
hidden to the learning agent.

Note that S′ contains encoding of the stage of satisfaction
of the formulas ϕi. However since the transition function
Tr′ is hidden, the agent cannot anticipate the effect of an
action before the action is executed.

RL with LTLf /LDLf restraining specifications
We now focus on the restraining bolt problem, i.e., how to do
RL with restraining specifications expressed in LTLf /LDLf .

We are given:

• A learning agent modeled by the MDP Mag =
〈S,A, Trag, Rag〉, with transitions Trag and rewardsRag
hidden, but sampled from the environment.

• A restraining bolt RB = 〈L, {(ϕi, ri)}mi=1〉 where:

– L = 2F is the set of possible fluents’ configurations
(analogously to S denoting the set of configurations
of the features available to Mag). Fluents in F are not
among the features that form the states S of the learn-
ing agent Mag .

– {(ϕi, ri)}mi=1 is a set of restraining specifications with
∗ ϕi, an LTLf /LDLf formula over F . Each ϕi selects

sequences of fluents’ configurations `1, · · · , `n (`k ∈
L) whose relationship with the sequences of states
s1, . . . , sn (sk ∈ S) of Mag is unknown.

∗ ri, the reward associated with ϕi. A reward ri is as-
signed to sequences of configurations `1, · · · , `n sat-
isfying ϕi.

The agent receives rewards based on Rag and the pairs
(ϕi, ri). In fact, often we have to handle tasks of episodic
nature. That is, the world can reach a configuration in which
no action can change its configuration nor generate new re-
wards, e.g., a final configuration in a game. In this case we
assume that the restraining bolt fluents F include a special
fluent Done that denotes reaching the final configuration.
This fluent can be used in LTLf /LDLf formulas to reward
the agent only at the end of the episode. When the episode
ends and a new episode is started, a new trace is generated
on which LTLf /LDLf formulas are evaluated again.

Notice that while the agent can see the features that the
reward Rag depends on, it cannot see those that affect ri.
Both S and L are features’ configurations, in the sense of

representing world properties. However, they capture dif-
ferent facets of the world. Let W be the set of real world
states. A feature is a function fj : W → Dj that maps
world states to another domain Dj , such as reals, enumera-
tions, booleans, etc. The feature vector of a world state wh
is the vector f(wh) = 〈f1(wh), . . . , fd(wh)〉 of feature val-
ues corresponding to wh. Given a world state wh, the cor-
responding configuration sh of the learning agent Mag con-
sists in those components of f(wh) that produce the agent’s
state, while the corresponding configuration of fluents `h is
formed by the components that assign truth values to the
fluents. That is, a subset of the world features describes the
agent states sh and another subset (for simplicity, assumed
disjoint from the previous one) is used to evaluate the fluents
in `h. Hence, a sequence w1, . . . , wn of world states defines
both a sequence of learning agent states s1, . . . , sn and a
sequence of fluent configurations `1, . . . , `n. While Rag de-
pends on the former, each ϕi and ri depend on the latter.
Consequently, by executing a policy and hence by repeat-
edly choosing actions in A, the agent visits a sequence of
world states, collecting for each of them, the sum of the re-
wards Rag and ri. The point to resolve is defining on the
base of which observations the agent can choose its next ac-
tions. Obviously the agent can in principle accumulate all
its observations s1, . . . , sn and on the other hand it can-
not see the fluents configurations `1, . . . , `n, however we
want to equip the agent to some means to establish the stage
of satisfaction of the formulas ϕi. Such a notion, as men-
tioned above, can be captured by considering the minimal
DFA Aϕi = 〈2P , Qi, qi0, δi, Fi〉 corresponding to formula
ϕi. Notice that such a DFA is unique. Hence we equip the
agent with additional observable features Q1 × . . . × Qm
corresponding to the states Let Aϕi . Such features are go-
ing to be provided by the restraining bolt.6 Note that this
does not give away fluents configurations `1, . . . , `n which
remain hidden to the agent, see Figure1

Hence, in general, we consider possibly non-Markovian
policies of the form

ρ̄ : (Q1 × . . .×Qm × S)∗ → A

and thus define the expected (discounted) cumulative reward
of a possibly non-Markovian policy ρ̄ as the expected reward
of infinite traces starting in the initial state s0, induced by the
policy itself (obtained as the expected sum of the collected
rewards Rag and ri).

Problem definition. (An instance of) the RL problem with
LTLf /LDLf restraining specifications is a pair Mrb

ag =
〈Mag, RB〉, where: Mag = 〈S,A, Trag, Rag〉 is a learn-
ing agent with Trag and Rag hidden, and RB =
〈L, {(ϕi, ri)}mi=1〉 is a restraining bolt formed by a set of
LTLf /LDLf formulas ϕi over L with associated rewards ri.

6Notice that coming up with the Q1, . . . , Qn and assigning the
rewards to some of them, while can perhaps be possible in very
simple cases, without a principled and systematic technique as the
one presented here it is virtually impossible. Indeed, to express di-
rectly LTLf /LDLf properties in the MDP one may need exponential
additional features, assuming a factorized representation, since the
corresponding DFA may be doubly exponential in the formula.



A solution to the problem is a (possibly non-Markovian) pol-
icy ρ̄ : (Q1 × . . . × Qm × S)∗ → A that maximizes the
expected cumulative reward.

To devise a solution technique, we assume that the agent
actions inA induce a transition distribution over the features
and fluents configuration, i.e.:7

Trrbag : S × L×A→ Prob(S × L).

Such a transition distribution, together with the initial values
of the fluents `0 and of the agent state s0, allow us to describe
a probabilistic transition system accounting for the dynam-
ics of the fluents and agent states. Moreover, when Trrbag is
projected on S only, i.e., the L components are marginal-
ized, we get Trag of Mag . Obviously, both Trrbag and Trag
are hidden to the learning agent. On the other hand, in re-
sponse to an agent action ah performed in the current state
wh (in the state sh of the agent and the configuration `h of
the fluents), the world changes into wh+1 from which sh+1

and `h+1 are obtained. This is all we need to proceed.
Given Mrb

ag = 〈Mag, RB〉 with Mag =
〈S,A, Trag, Rag〉 and RB = 〈L, {(ϕi, ri)}mi=1〉, we
define an NMRDP Mn

ag = 〈S×L, A, Trrbag, {(ϕi, ri)}mi=1∪
{(ϕs, Rag(s, a, s′))}s∈S,a∈A,s′∈S〉, where:
• states are pairs (s, `) formed by an agent configuration s

and a fluents configuration `;
• ϕi are as before;
• ϕs = 3(s ∧ a ∧ ◦(Last ∧ s′));
• Trrbag , ri and Rag(s, a, s′) are hidden and sampled from

the environment.
Formulas ϕi are as before, in particular they are con-

tinuously evaluated on the (partial) trace produced so far.
Though, they may use the special fluent Done to give the
reward associated to the formula at the end of the episode
(modulo reward shaping). Formulas 3(s∧a∧◦(Last∧s′)),
one per (s, a, s′), which require that both states s and ac-
tion a are followed by s′, are evaluated at the end of the
current (partial) trace (recall that Last denotes the last ele-
ment of the trace, c.f. Preliminaries). In this case, the reward
Rag(s, a, s

′) from Mag associated with (s, a, s′) is given.8
Observe that policies for Mn

ag have the form (S ×
L)∗ → A which needs to be restricted to have the
form required by our problem Mrb

ag . A policy ρ̄ :
(S × L)∗ → A has the form ρ̄ : (Q1 × . . . ×
Qm × S)∗ → A when ρ̄(〈s1, `1〉 · · · 〈sn, `n〉) =
ρ̄(〈q11, . . . , qm1, s1, 〉 · · · 〈q1n, . . . , qmn, sn, 〉) with qij =
δj(`1, . . . , `i, qj0). In other words, a policy ρ̄ : (S × L)∗ →
A has the form ρ̄ : (Q1 × . . . × Qm × S)∗ → A when the
fluents L are not directly accessible but are used only the
progress the DFAs Aϕi

corresponding to formulas ϕi. We
can now state the following result.

7Notice that this assumption is quite loose, as we can arbitrarily
enlargeL to define Trrbag . In the construction below only the fluents
in L that occur in the LTLf /LDLf formulas play an active role.

8Notice that we have as many of such formulas as transitions
(s, a, s′), this causes an exponential blow-up being S factorized in
features. However, we will get rid of them later.

Lemma 4. RL with LTLf /LDLf restraining specifications
Mrb
ag = 〈Mag, RB〉 with Mag = 〈S,A, Trag, Rag〉 and

RB = 〈L, {(ϕi, ri)}mi=1〉 can be reduced to RL over
the NMRDP Mn

ag = 〈S × L, A, Trrbag, {(ϕi, ri)}mi=1 ∪
{(ϕs, Rag(s, a, s′))}s∈S,a∈A,s′∈S〉, by restricting the policy
to learn to have the form ρ̄ : (Q1 × . . .×Qm × S)∗ → A.

As a second step, we apply the construction of the pre-
vious section and obtain a new MDP learning agent. In
such construction, because of their triviality, we do not
need to keep track of the state of the automata associated
with each ϕs, but just offer the reward Rag(s, a, s′) asso-
ciated with (s, a, s′). Instead, we do need to keep track of
state of each DFA Aϕi

= 〈2P , Qi, qi0, δi, Fi〉 correspond-
ing to ϕi. Hence, from Mn

ag , we obtain an MDP M ′ag =
〈S′, A, Tr′ag, R′ag〉 where:

• S′ = Q1 × · · · ×Qm × S × L is the set of states;
• Tr ′ag : S′ ×A× S′ → [0, 1] is defined as follows:

Tr′ag(q1, . . . , qm, s, `, a, q
′
1, . . . , q

′
m, s

′, `′) ={
Trag(s, `, a, s

′, `′) if ∀i : δi(qi, `
′) = q′i

0 otherwise;

• R′ag : S′ ×A× S′ → R is defined as:

R′ag(q1, . . . , qm, s, `, a, q
′
1, . . . , q

′
m, s

′, `′) =∑
i:q′i∈Fi

ri +Rag(s, a, s
′)

Observe that, besides the rewards Rag(s, a, s′) of the origi-
nal learning agent, the environment now offers the rewards
ri associated with the formulas ϕi, thus guiding the agent
towards the satisfaction of the ϕi (by progressing correctly
the corresponding DFAs Aϕi

).
By Theorem 1, it follows that the NMRDP Mn

ag and the
MDPM ′ag are equivalent. Hence, by Lemma 2, any policy of
Mn
ag has an equivalent policy (hence guaranteeing the same

reward) in M ′ag , and viceversa. We can thus learn a policy
on M ′ag instead of Mn

ag . We can thus refine Lemma 4 into
the following.
Lemma 5. RL with LTLf /LDLf restraining specifications
Mrb
ag = 〈Mag, RB〉 with Mag = 〈S,A, Trag, Rag〉 and

RB = 〈L, {(ϕi, ri)}mi=1〉 can be reduced to RL over the
MDP M ′ag = 〈S′, A, Tr′ag, R′ag〉, by restricting the policy
to learn to have the form Q1 × . . .×Qn × S → A.

This Lemma allows for restricting non-Markovian poli-
cies (Q1 × . . . × Qn × S)∗ → A to Markovian policy
Q1 × . . .×Qn × S → A without loss of generality.

As a last step, we solve the original RL task on Mrb
ag by

performing RL on a new MDP Mq
ag = 〈Q1 × · · · × Qm ×

S,A, Tr′′ag, R
′′
ag〉, where:

• The transition distribution Tr′′ag is the marginalization of
Tr′ag wrt L, and is unknown;

• The reward R′′ag is defined as:

R′′ag(q1, . . . , qm, s, a, q
′
1, . . . , q

′
m, s

′)=
∑

i:q′i∈Fi

ri+Rag(s, a, s
′).



• The states qi of the DFAs Aϕi are progressed correctly by
the environment.

Thus, we finally obtain our main result.
Theorem 6. RL with LTLf /LDLf restraining specifications
Mrb
ag = 〈Mag, RB〉 with Mag = 〈S,A, Trag, Rag〉 and

RB = 〈L, {(ϕi, ri)}mi=1〉 can be reduced to RL over the
MDP Mq

ag = 〈Q1× · · ·×Qm×S,A, Tr′′ag, R′′ag〉 and opti-
mal policies ρnewag for Mrb

ag can be learned by learning cor-
responding optimal policies for Mq

ag .
Proof. For brevity we use ~q to denote q1, . . . , qm. By
Lemma 5 we can focus on RL over the MDP M ′ag =
〈S′, A, Tr′ag, R′ag〉 under the restriction that the policy to
learn has the form Q1 × . . .×Qn × S → A.

Notice that from the definitions of R′ag and R′′ag , we
have that for all `, `′ ∈ L, R′ag(~q, s, `, a, ~q

′, s′, `′) =
R′′ag(~q, s, a, ~q

′, s′) =
∑
i:q′i∈Fi

ri+Rag(s, a, s
′). The crux

of the proof is to show that for any optimal policy
ρ the values vρ(~q, s, `) of the state value function for
M′ag do not depend on `. That is, it is necessary that
∀`1, `2.vρ(q1, . . . , qm, s, `1) = vρ(q1, . . . , qm, s, `2).

To see this, let Tr′ag(s, a, s
′) = P (s′|s, a), then

the Bellman equation in our case is: vρ(~q, s, `) =∑
~q′,s′,`′ P (~q′, s′, `′|~q, s, `, a)[R′ag(~q, s, `, a, ~q

′, s′, `′) +

γvρ(~q′, s′, `′)]. By using the equality be-
tween R′ag and R′′ag we have: vρ(~q, s, `) =∑
~q′,s′,`′ P (~q′, s′, `′|~q, s, `, a)[R′′ag(~q, s, a, ~q

′, s′) +

γvρ(~q′, s′, `′)]. On the other hand, observe that
we can compute ~q′ from ~q and `′, that is we
do not need `. Hence: P (~q′, s′, `′|~q, s, `, a) =
P (~q′, s′, `′|~q, s, a). So we can write: vρ(~q, s, `) =∑
~q′,s′,`′ P (~q′, s′, `′|~q, s, a)[R′′ag(~q, s, a, ~q

′, s′) +

γvρ(~q′, s′, `′)]. At this point, we see that vρ does not
depend from `, hence we can safely drop ` as argument for
vρ. Indeed, we get: vρ(~q, s) =

∑
~q′,s′ [R

′′
ag(~q, s, a, ~q

′, s′) +

γvρ(~q′, s′)]
∑
`′ P (~q′, s′, `′|~q, s, a) and by marginalizing the

distribution P (~q′, s′, `′|~q, s, a) over `′, we get: vρ(~q, s) =∑
~q′,s′ P (~q′, s′|~q, s, a)[R′′ag(~q, s, a, ~q

′, s′) + γvρ(~q′, s′)].
This is Bellman’s equation for Mq

ag , hence the thesis.
This theorem provides us with a technique to learn the

optimal policy for RL with LTLf /LDLf restraining specifica-
tion by making minimal intervention to the learning agent:
essentially we need to feed it with the rewards ri at suitable
times, and we need to allow the learning agent to keep track
of the stage of satisfaction of the restraining bolt formulas
by feeding it with new features for Q1, . . . , Qn.

Implementation and Examples
Implementation of agents learning policies with restraining
specifications is performed by assuming a learning phase
in simulation and an execution phase on the real world.
The learning phase is obtained by combining three software
components: 1) a simulator of the dynamic system, 2) a re-
straining bolt (RB) process, 3) a reinforcement learning (RL)
agent. All these components are modular (i.e., they can be
properly connected each other or replaced by other simi-
lar components). The simulator is responsible for computing

Figure 2: Experimental scenarios: BREAKOUT, SAPIENTINO,
COCKTAILPARTY

the evolution of the dynamic system under study: it receives
decisions (actions to be executed) by the RL agent and com-
municates: i) the current state of the system to both the RL
agent and the RB process, and ii) the current reward value to
the RL agent. The RB process receives the current state from
the simulator, evaluates the LTLf /LDLf formulas denoting
the restraining specifications and sends to the RL agent an
encoding of the progress of the DFA representing the formu-
las and reward values associated to their evolution. Finally,
the RL agent receives the simulator state, the RB state, and
the rewards and decides the actions to be executed, while
computing an optimal policy. By using such a simulator, the
RL agent can learn a policy that maximizes the cumulative
discounted reward taking into account both rewards from
the environment and rewards from the RB. In general, when
enough training is allowed, the computed policy, when exe-
cuted on the real world, will satisfy the RB specifications.

As mentioned, the RL agent and the RB process have dif-
ferent sensors to perceive different aspects of the state of
the world (or of the simulator). So we assume that they are
implemented with real sensors (when attached to the real
world) and corresponding virtual sensors (when attached to
the simulator). We also assume that the simulator is able to
model all the relevant evolutions of the world that are needed
to learn the specific task with restraining specifications.

Next we show the implementation of such components in
three examples (Figure 2). The first one uses a video-game
simulator, while the other two consider robotic tasks and
their corresponding models in a simulator. The core soft-
ware for the RL agent and for the RB process are domain-
independent, while the (virtual) sensors and the LTLf /LDLf
specifications are domain-dependent. Since all examples are
of episodic nature, the learning phase is managed by an ex-
ecution system that resets episodes when any of the follow-
ing conditions is verified: 1) a state of the DFA where the
formula is satisfied is reached, 2) a failure state (i.e., a state
from which it is not possible to satisfy any formula) of the
DFA is reached, 3) a maximum number of actions have been
executed (to avoid infinite loops).

To speed up learning, the implementation of the bolt mon-
itors the progress of the DFA corresponding to the restraining
specifications and applies a kind of reward shaping by ex-
ploiting the DFA structure9. Through reward shaping we can
anticipate part of the reward coming from temporal specifi-
cations without waiting for the formulas to become true.

Each experiment (i.e., a sequence of episodes to learn a
policy) terminates after a time limit that is different for each
problem (see next sections) and chosen to guarantee that a
policy consistent with the specifications is always found, al-
though in general not optimal. All the problems described

9Reward shaping is not described here for lack of space



below have been solved with n-step Sarsa algorithm, config-
ured with γ = 0.999, ε = 0.2, n = 100. The trend of the
solutions is anyway not sensitive to these parameters10.

Algorithms have been implemented as single-thread non-
optimized Python procedures, in a modular and abstract way
to operate on every problem. More details about the ex-
perimental configurations, source code of the implementa-
tion allowing for reproducing the results contained in this
paper, and videos of the found policies are available in
www.diag.uniroma1.it/restraining-bolt.
Breakout. BREAKOUT has been widely used to demonstrate
RL approaches. The goal of the agent is to control the pad-
dle in order to drive a ball to hit all the bricks in the screen.
In this example, we have considered two agents with dif-
ferent abilities: MOVE: the agent moves sideways to bounce
the ball; MOVE +FIRE: the agent can both move and fire
straight up to remove bricks. Agent’s state representation
uses the following features: fx: x position of the paddle;
fbx, fby, fdx, fdy: position and direction of movement of the
ball11. Reward is given to the agent when a brick is hit. With
this specification a RL algorithm can find a policy to remove
all the bricks and complete the game for both the agents.
Restraining bolt. We want to provide the agents with the fol-
lowing specification: the bricks must be removed from left to
right, i.e., all the bricks in column i must be removed before
completing any other column j > i. This specification can
be expressed with an LTLf /LDLf formula and to evaluate
such a formula, the bolt needs a representation fr(i,j) of the
status of each brick ri,j (present or removed). The agents,
after receiving in input from the bolt an encoding of the sta-
tus of the LTLf /LDLf formula and associated rewards, can
use the same RL algorithm to learn a new policy that will
complete the task (i.e., remove all the bricks) following the
restraining bolt specification (i.e., from left to right).

Notice that the same restraining bolt is applied to the
two different agents and they will both learn the behavior
specified by the LTLf /LDLf formula, obviously with differ-
ent policies. Rows 1 and 2 in Figure 3 show the results of
two experiments in the Breakout scenario with the follow-
ing configurations: Breakout 4x6 MOVE + FIRE (5 minutes),
Breakout 4x5 MOVE (1 hour). Left plots show the average
reward over the number of iterations, while right plots show
the score (i.e., number of columns correctly broken) of the
best policy computed so far (i.e., the results obtained in runs
without exploration). The figures show how the agent is able
to progressively learn how to progress over the states of the
DFA corresponding to the LTLf /LDLf specification. Similar
results are obtained in different configurations (e.g., differ-
ent sizes of the bricks). reported in the columns is encoded
with the first letter being either M for MOVE and F for FIRE
actions available, and the second letter being either L for
LOCAL and G for GLOBAL for the sensor modality.
Sapientino. SAPIENTINO Doc is an educational game for
5-8 y.o. children where a small mobile robot has to be pro-
grammed to visit specific cells in a 5x7 grid. Some cells con-

10See more results on the web site.
11Other state representations are also suitable to learn the task.

Figure 3: Average reward and scores over number of iterations.
Row 1: Breakout MOVE + FIRE 4x6 bricks (5 minutes); Row 2:
Breakout MOVE only 4x5 bricks (1 hour); Row 3: Sapientino S2
OMNI (3 minutes); Row 4: Sapientino S3 DIFFERENTIAL (1 hour);
Row 5: Cocktail Party (3 minutes).



tain concepts that must be matched by the children (e.g., a
colored animal, a color, the first letter of the animal’s name),
while other cells are empty. The robot executes sequences
of actions given in input by children with a keyboard on the
robot’s top side. During execution, the robot moves on the
grid and executes an action (actually a bip) to announce that
the current cell has been reached (this is called a visit of
a cell). A pair of consecutive visits are correct when they
refer to cells containing matching concepts. As in the real
game, we consider a 5x7 grid with 7 triplets of colored cells,
each triplet representing three matching concepts. State rep-
resentation is defined by the following features: fx, fy, fθ
reporting the pose of the agent in the grid. In this scenario,
we consider two different agents: OMNI: omni-directional
movements (actions: up, down, left, right), DIFFERENTIAL:
differential drive (actions: forward, backward, turn left, turn
right). With this specification, the agent can just learn how
to move in the grid, but it cannot match related concepts.
Restraining bolt. Consider now the specifications S2: visit at
least two cells of the same color for each color, in a given
order among the colors (the order of the colors is predefined:
first C1, then C2, and so on) and S3: visit all the triplets of
each color, in a given order among the colors. The following
additional features are needed to express and evaluate the
corresponding formula: fb reporting that a bip action has just
been executed and fc reporting the color of the current cell.

The restraining specifications for these games can be ex-
pressed with LTLf formulas. A fragment of LTLf formula
for the first game relative to the first color C1 is

¬bipU(
∨
j=1,2,3 cellC1,j ∧ bip) ∧∧

j=1,2,3 2(cellC1,j ∧ bip→ ◦2(bip→¬cellC1,j)) ∧∨
j=1,2,3 2(cellC1,j ∧ bip→ ◦(¬bipU

∨
k 6=j cellC1,k ∧ bip)

For other colors Ci+1, we use a similar formula, but requir-
ing that

∨
j=1,2,3 cellCi,j ∧ bip has already been satisfied.

Two agents and two restraining bolts can be combined to
form 4 different learning situations. We show only two of
them. Rows 3 and 4 of Figure 3 show the agents’ learning
ability (score = 14 for S2 specs, score = 21 for the S3 specs).
Similar results are obtained in different configurations.
Cocktail party. For a service robot involved in a cocktail
party we consider a representation of the state in terms of
robot’s pose and objects’ (drinks and snacks) and people’s
location. The agent can move in the environment, grasp and
deliver items to people, and get a reward when a delivery
task is completed. The robot has no sophisticated people
perception capabilities, and no memory is available in the
underlying MDP modeling the domain, so the robot cannot
get information about individual people or remember who
received what. The robot in this scenario will just learn how
to bring one item to any person (choosing the shortest path).
Restraining bolt. Consider the following specification: serve
exactly one drink and one snack to every person, but do not
serve alcoholic drinks to minors. As in the previous exam-
ples, the restraining bolt works on separate features, namely
identity, age and received items12 and uses an LTLf /LDLf

12In practice, services like Microsoft Cognitive Services Face

formula to model this specification. operating scenario. We
assume the map of the environment to be known, people sit-
ting at tables in predefined known positions and locations of
snack and drink items also known. From these information
we can instantiate a simulator for the robot to navigate in
this environment and reach the different locations13.

For learning this task, we considered a problem with two
people and two different kinds of drinks and snacks (4 tasks
to be executed in total) and we implemented an abstract sim-
ulator reproducing the scenario of RoboCup@Home compe-
tition. The results of learning the restrained task in the simu-
lator are depicted in Row 5 of Figure 3 (score = 4 means that
the 2 persons have received one drink and one snack each).
As shown, after about 1 minute of simulation14, the RL agent
converged to a policy satisfying the RB specifications.

Minecraft. As an example of our approach’s modularity, we
used the same agent of SAPIENTINO in a MINECRAFT sce-
nario. Here the agent has to accomplish 10 tasks (described
with non-Markovian rewards via an LTLf /LDLf formula).
The two agents share the same state representation S but dif-
fer in the action set A, the fluent configurations L, and the
component progressing the DFAs. Results (not shown here)
confirm that a general-purpose agent can learn several tasks
by only receiving information from its restraining bolt.

Conclusions
We have shown how to perform RL with LTLf /LDLf re-
straining specifications by resorting to typical RL techniques
based on MDPs. Notably, we have shown that the features
needed to evaluate LTLf /LDLf formulas can be kept sepa-
rated from those directly accessible to the learning agent.

Our work can be ascribed to that part of research gen-
erated by the urgency of providing safety guarantees to
AI techniques based on learning (Amodei et al. 2016;
Hadfield-Menell et al. 2017; Orseau and Armstrong 2016).
In particular, it shares similarities with recent work on
constraining the RL agent to satisfy certain safety condi-
tions (Wen, Ehlers, and Topcu 2015; Achiam et al. 2017;
Alshiekh et al. 2018). There are however important dif-
ferences. First, in enforcing the restraining bolt we con-
sider the learning agent essentially as a black box. That
is, the restraining bolt does not need to know the inter-
nals S of the learning agent, and specifies the desired con-
straints using only its world features L. On the other hand,
we do not guarantee the satisfaction of the restraining bolt
constraints during training, as in (Achiam et al. 2017).
In fact, differently from (Wen, Ehlers, and Topcu 2015;
Alshiekh et al. 2018), we do not guarantee the hard satisfac-
tion of constraints even after training. After all “You can’t
teach pigs to fly”! and we may very well ask to do so in
our restraining bolts, being these completely unrestricted in
the selection of world features and in the kind of formulas
they specify over such features. If we want to check formally

API can be integrated into the bolt to provide this information.
13Specifically, we used Stage simulator in ROS with standard

navigation stack.
14This time can be drastically reduced using optimized code.



that the optimal policy satisfies the restraining bolt specifica-
tion, we first need to model how actions affect the restraining
bolt’s features L, i.e., we need to link the learning agent’s
features S to L, and then we can use, e.g., model checking.
Notably, for doing RL we do not need to specify such a link,
but we can simply allow the (possibly simulated) world to
act as the link, in line with what advocated, e.g., in (Brooks
1991), and very differently from what typically considered
in knowledge representation (Reiter 2001).

Apart from restraining bolts, the interest in having sepa-
rate representations is manifold. The learning agent feature
space can be designed separately from the features needed
to express the goal, thus promoting separation of concerns
which, in turn, facilitates the design, providing for modular-
ity and reuse of representations (the same agent can learn
from different bolts and the same bolt can be applied to dif-
ferent agents). Also, a reduced agent’s feature space allows
for realizing simpler agents (think, e.g., of a mobile robot
platform, where one can avoid specific sensors and percep-
tion routines), while preserving the possibility of acting ac-
cording to complex declarative specifications which cannot
be represented in the agent’s feature space. We plan to in-
vestigate this separation further in the future.
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