
Restraining bolts for Reinforcement Learning agents

Giuseppe De Giacomo and Luca Iocchi and Marco Favorito and Fabio Patrizi
DIAG - Università di Roma “La Sapienza”, Italy

{lastname}@diag.uniroma1.it

Abstract

In this work we have investigated the concept of “restrain-
ing bolt”, inspired by Science Fiction. We have two distinct
sets of features extracted from the world, one by the agent
and one by the authority imposing some restraining specifi-
cations on the behaviour of the agent (the “restraining bolt”).
The two sets of features and, hence the model of the world
attainable from them, are apparently unrelated since of in-
terest to independent parties. However they both account for
(aspects of) the same world. We have considered the case in
which the agent is a reinforcement learning agent on a set of
low-level (subsymbolic) features, while the restraining bolt
is specified logically using linear time logic on finite traces
LTLf /LDLf over a set of high-level symbolic features. We
show formally, and illustrate with examples, that, under gen-
eral circumstances, the agent can learn while shaping its goals
to suitably conform (as much as possible) to the restraining
bolt specifications. 1

Introduction
A restraining bolt is a “device that restricts a droid’s
[agent’s] actions when connected to its systems. Droid own-
ers install restraining bolts to limit actions to a set of desired
behaviors.”2

We have two distinct representations of the world, one
by the agent and one by the authority imposing restrain-
ing specifications, i.e., the bolt. Such representations are ap-
parently unrelated as developed by independent parties, but
both model (aspects of) the same world. We want the agent
to conform (as much as possible) to the restraining specifica-
tions, even if these are not expressed in terms of the agent’s
world representation.

Studying this problem from a classical Knowledge Repre-
sentation perspective (Reiter 2001) would require to estab-
lish some sort of “glue” between the representation by the
agent and that by the restraining bolt. Instead, we bypass
dealing with such a “glue” by studying this problem in the
context of Reinforcement Learning (RL) (Puterman 1994;

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1This paper reports a research originally presented at ICAPS
2019 (De Giacomo et al. 2019b)

2https://www.starwars.com/databank/
restraining-bolt

Sutton and Barto 1998), which is currently of great inter-
est to develop components with forms of decision making,
possibly coupled with deep learning techniques (Mnih et al.
2015; Silver et al. 2017).

Specifically, we consider an agent and a restraining bolt
of different nature. The agent is a reinforcement learning
agent whose “model” of the world is a hidden, factorized,
Markov Decision Processes (MDP) over a certain set of
low-level (possibly subsymbolic) world features. That is, the
state is factorized in a set of features observable to the agent,
while transition function and reward function are hidden.
The restraining bolt consists in a high-level logical speci-
fication of traces that are considered desirable. Such speci-
fications are expressed in temporal logics over finite traces,
LTLf and its extension LDLf (De Giacomo and Vardi 2013;
De Giacomo and Rubin 2018; Brafman, De Giacomo, and
Patrizi 2018).

The connection between the agent and the restraining bolt
is loose: the bolt provides additional reward to the agent.
In addition, we provide to the agent additional features to
allow the agent itself distinguish the various stages of the
satisfaction of temporal formulas. Without these additional
features, the agent would not be able to act differently at
different stages to get the rewards according to the temporal
specifications.

We show that, in spite of the loose connection between
the two models, under general circumstances, the agent can
learn to act so as to conform as much as possible to the
LTLf /LDLf specifications. Observe that we deal with two
separate representations (i.e., two distinct sets of features),
one for the agent and one for the bolt, which are appar-
ently unrelated, but in reality, correlated by the world itself
(Brooks 1991). The crucial point is that, in order to perform
RL effectively in presence of a restraining bolt such a corre-
lation does not need to be formalized.

For example, consider a service robot serving drinks and
snacks at a party. The robot knows the locations where it
can grasp drink and snack items and the locations of people
that can receive such items. The robot can execute actions
to move in the environment, to grasp objects and to deliver
them to people. With rewards associated to effective deliver,
the robot can learn how to serve something to people. Now,
suppose we want to impose the following restraining bolt
specification: do not serve alcoholic drinks to minors. To



LEARNING AGENT

WORLD

LA 
Features 
Extractor

RESTRAINING 
BOLT

l

s

q a

RB 
Features
Extractor

w

R

r

s

Figure 1: Learning Agent and Restraining Bolt

express this specification (e.g., as an LTLf /LDLf formula), a
representation of the status of each person (i.e., identity and
age) is needed, even though these features are not available
to the learning agent (but only to the restraining bolt).

Notice that the presence of LTLf /LDLf specification
makes the whole system formed by the agent and the re-
straining bolt non-Markovian. Recently, interest in non-
Markovian Reward Decision Processes NMRDPs (Bacchus,
Boutilier, and Grove 1996; Whitehead and Lin 1995), and
in particular on expressing rewards using linear-time tem-
poral logic has been revived and motivated by the difficulty
in rewarding complex behaviors directly on MDPs (Littman
2015; Littman et al. 2017). In this context, the use of linear
time logics over finite traces such as LTLf or its extension
LDLf has been recently advocated (Camacho et al. 2017;
Brafman, De Giacomo, and Patrizi 2018; Icarte et al. 2018;
De Giacomo et al. 2019b). Notably, both LTLf and LDLf
formulas can be transformed into deterministic finite state
automata tracking the stage of satisfaction of the formu-
las (De Giacomo and Vardi 2013). This, in turn, allows for
transforming an NMRDP with non-Markovian LTLf /LDLf
rewards into an equivalent MDP over an extended state
space, obtained as the crossproduct of the states of the NM-
RDP and the states of the automaton. This transformation
is of particular interest in RL with temporally specified re-
wards expressed in LTLf /LDLf , since it allows to do RL on
an equivalent MDP whose (optimal) policies are also (opti-
mal) policies for the original problem, and viceversa (Braf-
man, De Giacomo, and Patrizi 2018). This provides the basis
for our development here.

RL with Restraining Bolts
We are given:

• A learning agent modeled by the MDP Mag =
〈S,A, Trag, Rag〉, with transitions Trag and rewardsRag
hidden, but sampled from the environment.

• A restraining bolt RB = 〈Ł, {(ϕi, ri)}mi=1〉 where:

– Ł = 2F is the set of possible fluents’ configurations
(analogously to S denoting the set of configurations
of the features available to Mag). Fluents in F are not
among the features that form the states S of the learn-
ing agent Mag .

– {(ϕi, ri)}mi=1 is a set of restraining specifications with
∗ ϕi, an LTLf /LDLf formula over F . Each ϕi selects

sequences of fluents’ configurations `1, · · · , `n (`k ∈

Ł) whose relationship with the sequences of states
s1, . . . , sn (sk ∈ S) of Mag is unknown.

∗ ri, the reward associated with ϕi. A reward ri is as-
signed to sequences of configurations `1, · · · , `n sat-
isfying ϕi.

The agent receives rewards based on Rag and the pairs
(ϕi, ri).

Note that, when the episode ends and a new episode is
started, a new trace is generated on which LTLf /LDLf for-
mulas are evaluated again.

Given a formula ϕi we consider the minimal DFA Aϕi =
〈2¶, Qi, qi0, δi, Fi〉 corresponding to formula ϕi. Because of
the non-Markovian nature of the rewards coming from the
restraining bolt, we need to equip the agent with additional
observable features Q1 × . . . × Qm corresponding to the
states of satisfaction of the formulas ϕ1 . . . ϕm.

The architecture described above is depicted in Figure 1.
We observe that while the configuration of fluents `1, . . . , `n
is available to the restraining bolt, this is hidden to the agent.
In fact, the agent receives only (an encoding of) the DFA
state (q) from the restraining bolt. Therefore, in order to in-
corporate a bolt, the learning agent needs extend its state
representation with just a variable to receive the encoding
of q (for instance, an integer variable). Obviously, such an
extension will accommodate any bolt.

Problem definition. (An instance of) the RL problem with
LTLf /LDLf restraining specifications is a pair Mrb

ag =
〈Mag, RB〉, where: Mag = 〈S,A, Trag, Rag〉 is a learn-
ing agent with Trag and Rag hidden, and RB =
〈Ł, {(ϕi, ri)}mi=1〉 is a restraining bolt formed by a set of
LTLf /LDLf formulas ϕi over Ł with associated rewards ri.
A solution to the problem is a (possibly non-Markovian) pol-
icy ρ̄ : (Q1 × . . . × Qm × S)∗ → A that maximizes the
expected cumulative reward.

Solution. We now give our solution. Given an instance of
the problem Mrb

ag:

1. For every ϕi, compute the equivalent DFA Aϕi
(De Gia-

como and Vardi 2013)
2. Do RL on the MDP Mq

ag = 〈Q1 × · · · × Qm ×
S,A, Tr′ag, R

′
ag〉 where:

• The transition distribution Tr′ag is unknown;
• The reward R′ag , unknown to the agent, is defined as:

R′ag(q1, . . . , qm, s, a, q
′
1, . . . , q

′
m, s

′)=
∑

i:q′i∈Fi

ri+Rag(s, a, s
′).

• The states qi of the DFAs Aϕi
are progressed correctly

by the environment.

Note that this technique will only find Markovian policies
of the form: (Qi × · · · × Qm × S) → A. However, this
does not prevent to find an optimal solution, as shown by the
following theorem.
Theorem 1. RL with LTLf /LDLf restraining specifications
Mrb
ag = 〈Mag, RB〉 with Mag = 〈S,A, Trag, Rag〉 and

RB = 〈Ł, {(ϕi, ri)}mi=1〉 can be reduced to RL over the



Figure 2: Experimental scenarios: BREAKOUT, SAPI-
ENTINO, COCKTAILPARTY

MDP Mq
ag = 〈Q1× · · ·×Qm×S,A, Tr′ag, R′ag〉 and opti-

mal policies ρnewag for Mrb
ag can be learned by learning cor-

responding optimal policies for Mq
ag .

Proof. see (De Giacomo et al. 2019b).

Use Cases
We describe two use cases for applying restraining bolts:
BREAKOUT, MINECRAFT, and the COCKTAILPARTY re-
ported in (De Giacomo et al. 2019b) and (De Giacomo et
al. 2019a).
Breakout. BREAKOUT has been widely used to demonstrate
RL approaches. The goal of the agent is to control the pad-
dle in order to drive a ball to hit all the bricks in the screen.
In this example, we considered two cases where the agent
has different abilities: MOVE: the agent moves sideways to
bounce the ball; MOVE +FIRE: the agent can both move and
fire straight up to remove bricks. Agent’s state representa-
tion uses the following features: fx: x position of the paddle;
fbx, fby, fdx, fdy: position and direction of movement of the
ball3. Reward is given to the agent when a brick is hit. With
this specification a RL algorithm can find a policy to remove
all the bricks and complete the game for both the agents.
Restraining bolt. We provide the agents with the following
specification: the bricks must be removed from left to right,
i.e., all the bricks in column i must be removed before com-
pleting any other column j > i. This specification can be
expressed with an LTLf /LDLf formula and to evaluate such
a formula, the bolt needs a representation fr(i,j) of the sta-
tus of each brick ri,j (present or removed). In both cases, by
applying our technique, we can use the same RL algorithm
to learn a policy that will complete the task (i.e., remove all
the bricks) following the restraining bolt specification (i.e.,
from left to right).

Notice that the same restraining bolt is applied to the
two different agents and they will both learn the behavior
specified by the LTLf /LDLf formula, obviously with differ-
ent policies. Rows 1 and 2 in Figure 3 show the results of
two experiments in the Breakout scenario with the follow-
ing configurations: Breakout 4x6 MOVE + FIRE (5 minutes),
Breakout 4x5 MOVE (1 hour). Left plots show the average
reward over the number of iterations, while right plots show
the score (i.e., number of columns correctly broken) of the
best policy computed so far (i.e., the results obtained in runs
without exploration). The figures show how the agent is able
to progressively learn how to progress over the states of the
DFA corresponding to the LTLf /LDLf specification. Similar

3Other state representations are also suitable to learn the task.

Figure 3: Average reward and scores over number of itera-
tions. Row 1: Breakout MOVE + FIRE 4x6 bricks (5 minutes);
Row 2: Breakout MOVE only 4x5 bricks (1 hour).

results are obtained in different configurations (e.g., differ-
ent sizes of the bricks).

Minecraft. In this Minecraft-like scenario similar to (Icarte
et al. 2018), the agent has to accomplish 10 tasks (described
with non-Markovian rewards via an LTLf /LDLf formula).
State representation is defined by the following features:
fx, fy, fθ reporting the pose of the agent in the grid. In this
scenario, we consider two different agents: OMNI: omni-
directional movements (actions: up, down, left, right), DIF-
FERENTIAL: differential drive (actions: forward, backward,
turn left, turn right). The agent also has an action get to get
resources and use to use a tool.

Restraining Bolts. As restraining bolts, we have: Ti: com-
plete task i; S1: avoid forbidden actions. A task is a se-
quence of getting resources and using tools. A forbidden
action happens when either the get or the use are not used
properly (e.g. doing an use or a get when not close to neither
a resource nor a tool).

Figure 4 shows experiments in this domain where the
OMNI and DIFFERENTIAL agents learned 10 tasks. The
meaning of the plots is the same as for the ones com-
mented before, with the score defined as the number of
tasks successfully accomplished. These experiments show
that a learning agent can learn different tasks (specified in
LTLf /LDLf ) in different scenarios without changing its in-
ternal representation S and learning algorithm, when a suit-
able component provides to the agent an encoding of the
current states of the DFAs of the LTLf /LDLf formulas. No-
tably, the results confirm that a general-purpose agent can
learn several tasks by only receiving information from its
restraining bolt.
Cocktail party. For a service robot involved in a cocktail



Figure 4: Results in Minecraft. Top: OMNI (5 minutes). Bot-
tom: DIFFERENTIAL (15 minutes).

party we consider a representation of the state in terms of
robot’s pose and objects’ (drinks and snacks) and people’s
location. The agent can move in the environment, grasp and
deliver items to people, and get a reward when a delivery
task is completed. The robot has no sophisticated people
perception capabilities, and no memory is available in the
underlying MDP modeling the domain, so the robot cannot
get information about individual people or remember who
received what. The robot in this scenario will just learn how
to bring one item to any person (choosing the shortest path).
Restraining bolt. Consider the following specification: serve
exactly one drink and one snack to every person, but do not
serve alcoholic drinks to minors. As in the previous exam-
ples, the restraining bolt works on separate features, namely
identity, age and received items 4 and uses an LTLf /LDLf
formula to model this specification. We assume the map of
the environment to be known, people sitting at tables in pre-
defined known positions and locations of snack and drink
items also known. From these information we can instanti-
ate a simulator for the robot to navigate in this environment
and reach the different locations

For learning this task, we considered a problem with two
people and two different kinds of drinks and snacks (4 tasks
to be executed in total) and we implemented an abstract sim-
ulator reproducing the scenario of RoboCup@Home compe-
tition. The results of learning the restrained task in the simu-
lator are depicted in Row 5 of Figure 3 (score = 4 means that
the 2 persons have received one drink and one snack each).
As shown, after about 1 minute of simulation

These examples illustrate the effectiveness of the pro-
posed approach for learning tasks specified by LTLf /LDLf
restraining specifications by reducing the NMRDP in an
equivalent MDP without changing state representation (ex-
cept for features for distinguishing the states of DFAs of
the LTLf /LDLf specs) and learning algorithm. More de-
tails about the experimental configurations, source code
of the implementation allowing forreproducing the re-
sults contained in this paper, and videos of the found

4In practice, services like Microsoft Cognitive Services Face
API can be integrated into the bolt to provide this information.

policies are available in www.diag.uniroma1.it/
restraining-bolt.

Acknowledgements
This work was partially funded by Università di Roma La
Sapienza, under project DRAPE: Data-awaRe Automatic
Process Execution.

References
Bacchus, F.; Boutilier, C.; and Grove, A. 1996. Rewarding behav-
iors. In AAAI, 1160–1167.
Brafman, R. I.; De Giacomo, G.; and Patrizi, F. 2018. LTLf /LDLf

non-markovian rewards. AAAI.
Brooks, R. A. 1991. Intelligence without representation. Artif.
Intell. 47(1-3):139–159.
Camacho, A.; Chen, O.; Sanner, S.; and McIlraith, S. A. 2017.
Decision-making with non-markovian rewards: From LTL to
automata-based reward shaping. In RLDM, 279–283.
De Giacomo, G., and Rubin, S. 2018. Automata-theoretic founda-
tions of FOND planning for LTLf and LDLf goals. In IJCAI.
De Giacomo, G., and Vardi, M. Y. 2013. Linear temporal logic and
linear dynamic logic on finite traces. In IJCAI.
De Giacomo, G.; Iocchi, L.; Favorito, M.; and Patrizi, F. 2019a.
Foundations for restraining bolts - demonstration. In Proceed-
ings of the International Conference on Automated Planning and
Scheduling (Demo).
De Giacomo, G.; Iocchi, L.; Favorito, M.; and Patrizi, F. 2019b.
Foundations for restraining bolts: Reinforcement learning with
ltlf/ldlf restraining specifications. In Proceedings of the Interna-
tional Conference on Automated Planning and Scheduling, vol-
ume 29, 128–136.
Icarte, R. T.; Klassen, T. Q.; Valenzano, R. A.; and McIlraith, S. A.
2018. Teaching multiple tasks to an RL agent using LTL. In AA-
MAS, 452–461.
Littman, M. L.; Topcu, U.; Fu, J.; Jr., C. L. I.; Wen, M.; and Mac-
Glashan, J. 2017. Environment-independent task specifications via
GLTL. CoRR abs/1704.04341.
Littman, M. L. 2015. Programming agent via rewards. In Invited
talk at IJCAI.
Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A. A.; Veness, J.;
Bellemare, M. G.; Graves, A.; Riedmiller, M. A.; Fidjeland, A.;
Ostrovski, G.; Petersen, S.; Beattie, C.; Sadik, A.; Antonoglou, I.;
King, H.; Kumaran, D.; Wierstra, D.; Legg, S.; and Hassabis, D.
2015. Human-level control through deep reinforcement learning.
Nature 518(7540):529–533.
Puterman, M. L. 1994. Markov Decision Processes: Discrete
Stochastic Dynamic Programming. Wiley.
Reiter, R. 2001. Knowledge in Action. MIT Press.
Silver, D.; amd Karen Simonyan, J. S.; Antonoglou, I.; Huang, A.;
Guez, A.; Hubert, T.; Baker, L.; Lai, M.; Bolton, A.; Chen, Y.; Lil-
licrap, T.; Hui, F.; Sifre, L.; van den Driessche, G.; Graepel, T.;
and Hassabis, D. 2017. Mastering the game of go without human
knowledge. Nature 550:354–359.
Sutton, R. S., and Barto, A. G. 1998. Reinforcement learning - an
introduction. MIT Press.
Whitehead, S. D., and Lin, L.-J. 1995. Reinforcement learning of
non-markov decision processes. Artificial Intelligence 73(1):271 –
306. Computational Research on Interaction and Agency, Part 2.


