
Domain-independent reward machines for
modular integration of planning and learning

Giuseppe De Giacomo*, Marco Favorito, Luca Iocchi, Fabio Patrizi
DIAG – Sapienza Univeristà di Roma, Italy

lastname@diag.uniroma1.it

Abstract

Integrating planning and learning components has many ad-
vantages in practical applications, as it allows for combin-
ing the different benefits of the two approaches: prediction of
future states from planning with adaptivity to current situa-
tions from learning. However, a problem with is approach is
that the two components should share a common represen-
tation of the information about the environment (e.g., states
and actions). Previous work addresses this problem in the
case where planning and learning are defined over different
state variables, by defining a joint state space and a mapping
between the two representations. In this paper, we present a
method for integrating planning and reinforcement learning
using a modular design where the two components can use
their own representation formalism, without requiring an ex-
plicit mapping between them. More specifically, we introduce
the concept of domain-independent reward machines, gener-
ated by a goal-oriented planning system and use them to drive
a reinforcement learning agent to reach a goal state. More-
over, we show how to automatically generate and use sub
task decomposition to speed up the reinforcement learning
process.

Introduction
Reinforcement Learning (RL) (Sutton and Barto 2018) is a
powerful tool for computing optimal behaviors of an agent,
by collecting experience during the execution of some task
and without requiring any knowledge about the environ-
ment’s model. Many algorithms have been developed to
explore the environment in an efficient way. Some model-
based approaches aim at reconstructing the underlying dy-
namic system, typically a Markov Decision Process (MDP),
during the learning phase. A more recent one also aims at ex-
tracting knowledge (using a symbolic formalism) from RL
trials.

Hierarchical RL (HRL) is an extension of RL, where the
problem is organized in a hierarchy of sub-problems, with
the aim of speeding up the learning process. The use of
factored MDPs, i.e., where states are modeled using state
variables, in model-based RL allows for introducing a-priori
knowledge expressed in a symbolic formalism.

*Contact Author
Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: Architectural schema

In these approaches, the model is fully specified, and this
includes mappings that relate the various hierarchical lev-
els. However, HRL typically takes advantage of Knowledge
Engineering (i.e., knowledge representation and reasoning
tools) to speedup the learning process, rather than for speci-
fying goals.

Very recent works have adopted logical specifications to
express (temporal) goals. When temporal logics, such as
LTL , are used, problems involving Non-Markovian rewards
can easily be formalized (i.e., Non-Markovian Reward Deci-
sion Processes, NMRDP ). Examples of such approaches in-
clude Reward Machines (Icarte et al. 2018) and Restraining
Bolts (De Giacomo et al. 2019), which exploit finite-state
machines as a way to specify RL agents’ rewards.

When hierarchical structures are considered, several
mechanisms to speed up the learning process can be used,
such as options (Sutton, Precup, and Singh 1999), policy
sketches (Andreas, Klein, and Levine 2017), etc. However,
such previous approaches require additional modelling ef-
fort and, in hierarchical settings, also a mapping between
the different representation layers. Automatic generation of
sub tasks in HRL is still an open problem.

In this paper, we start from the work described in Icarte



et al. 2018, where HRL, non-Markovian rewards, and task
decomposition, are combined into the Reward Machine
framework. Similarly to that, we also consider two sepa-
rate representation layers, one for the goal and one for the
learning agent, but do not require any mapping between
them. Specifically, we consider the setting depicted in Fig. 1,
where three distinct modules are used to learn an optimal be-
havior (policy) over the environment:
• a planning module, which performs high-level offline rea-

soning and generates a plan π, used to guide, and speedup,
the learning process;

• a reward machine, which is, essentially, a runtime moni-
tor that observes the environment from the high-level per-
spective and returns a signal σ whenever the input plan π
advances one step towards the goal;

• a learning module, which observes the environment from
a low-level perspective, interacting with it through actions
and possible rewards, and receiving the signals σ from the
reward machine.

The two perspectives of the environment are based on the
use of two independent sets of sensors, S1 and S2, each ex-
tracting its own state variables (or features) of the environ-
ment.

Notice that the planning module operates offline and state
variables observed by S1 are used to detect the initial state
I (dashed line in Fig. 1) to start the plan generation process.
At plan execution time, the state variables observed by the
reward machine through S1 take values consistently with the
observations of the learning agent through S2.

As said, this setting is very similar to that of (Icarte et al.
2018), with the crucial difference that we do not require an
explicit mapping between the two representation layers and
thus the reward machine does not need to be an input for
the RL algorithm but can be kept as a separate component.
In other words, in our work the RL agent does not know
the reward machine, but it just receives domain-independent
signals from it. Of course, an implicit mapping exists, as
the two representations derive from observations of the same
environment, however it is not necessary to make this map-
ping explicit to the RL agent and thus the proposed approach
does not require additional modeling efforts. Nonetheless, in
some cases, in order to ensure such implicit relation, we may
require the set of sensors to be synchronized (i.e., the com-
ponents should share a common clock).

Since the learning component does not require a represen-
tation of the domain model specified at the planning level
and, consequently, the reward machine can produce only
signals not depending on the state representations used by
the planning and learning modules, both components are re-
ferred to as domain-independent. Such domain-independent
components can thus be designed and implemented sepa-
rately, allowing the system to be highly modular. For exam-
ple, planner modules with different representations of states
and actions can be interchanged without requiring any mod-
ification of the implementation of the learning module; the
same reward machine can be applied to different learning
agents with different representations of states and actions
without requiring any modification on the agent.

In this paper, we show that, although the planning
and learning modules are loosely linked with domain-
independent signals only, they can still cooperate to reach
a common goal, as they observe and act (directly or indi-
rectly) on the same environment. We also discuss how such
mechanism allows for an easy way to automatically define
and exploit sub task decomposition, to speedup the learn-
ing process and, finally, report on experimental results. The
original contributions of this paper are the following.

Firstly, we propose an approach for the integration of a
planning component (or more in general a reasoning sys-
tem) with a RL agent, in a setting where the components
use different representation formalisms (for example, differ-
ent state variables and different actions), without requiring
an explicit mapping. This simplifies the previous approach
based on reward machines (Icarte et al. 2018) as reducing
the required modeling effort and, more importantly, broad-
ens the range of applicability of the approach, to those situa-
tions where a mapping is not simple to define or not possible
at all.

Secondly, we present a mechanism to automatically gen-
erate sub task decomposition, that can be used to speedup the
learning process, by extending previous work on restraining
bolts (De Giacomo et al. 2019), demonstrating faster con-
vergence when sub task decompositions are considered.

Related work
A general approach for integrating planning and learning is
given by model-based RL where the goal is to reconstruct
the model of the environment while learning. Dyna (Sutton
1990) and R-Max (Brafman and Tennenholtz 2002) are ex-
ample of such methods in which the learning experience is
used to build a model of the environment and such a model
is used to generate policies followed during the learning pro-
cess. The use of inaccurate models and few real trials to
speed-up learning is also presented in (Abbeel, Quigley, and
Ng 2006). In all these works the behavior of the agent is
guided by a reward function that is assumed to be available
and sampled during agent execution.

The use of a planner to drive the RL process is shown
for example in (Grzes and Kudenko 2008; Efthymiadis and
Kudenko 2014) where it is used to define a reward shaping
functions to drive the agent along the plan, and in (Leonetti,
Iocchi, and Stone 2016) to constrain the exploration space of
the agent, by defining partial policies in which each state is
associated with a set of possible actions that will be consid-
ered during the exploration phase of RL. In these works, the
planning domain is defined on the same state representation
that is used by the RL algorithm and it is thus deeply linked
to it.

Hierarchical Reinforcement Learning (HRL) and options
(Sutton, Precup, and Singh 1999) are also commonly used to
speed-up the learning process. While, in general, the mod-
els used at the layers of the hierarchical architecture and
the options are manually defined, there have been some ap-
proaches to generate them automatically with a planning
component, such as (Grounds and Kudenko 2007; Yang
et al. 2018). Also in these cases, either the planning and the
learning components share the same representation of the



states, or an explicit mapping between these representations
is required.

Finally, more general approaches to drive the RL pro-
cess of an agent, considering also temporal goals and non-
Markovian rewards are reward machines (Icarte et al. 2018)
and restraining bolts (De Giacomo et al. 2019). The use of
an automated planner to generate controllers for reward ma-
chines is also presented in (Leon Illanes et al. 2019), but
again an explicit mapping between the representations used
by the planner component and the learning agent is required.
While the restraining bolts described in (De Giacomo et al.
2019) use a different representation with respect to the one
used by the agent, without requiring an explicit mapping be-
tween such representations. However, this work does not de-
scribe the generation of the bolt that is assumed to be given.

The method described in this paper combines the advan-
tages of previous works by defining a framework for auto-
matic generation of a reward machine using model-based
and goal-oriented planning, in order to drive the RL agent
to learn a policy following the desired plan, thus achiev-
ing the desired goal. We solve this problem in the setting in
which the planning component and the learning component
use different representations of states and actions involved
in the task and a mapping between such representation is
not required. Such a reward machine, whose states must not
be mapped to the states of the learning agent, is called in
this paper domain-independent to emphasize its modular-
ity. Indeed, as shown later, a domain-independent reward
machine communicates with the RL agent through domain-
independent messages (i.e., messages not expressed in terms
of the representation used to formalize the planning prob-
lem). Consequently, a domain-independent reward machine
can be placed on any RL agent without requiring additional
specifications or modifications of such an agent.

Problem formulation
The hierarchical architecture we consider is reported in
Fig. 1. A planning module generates a plan π, given a do-
main model and a goal G. The plan is then used to generate
a reward machine (see below), to guide the learning process
of a learning agent, by providing suitable signals σ during
the learning process. We next introduce the basic compo-
nents.

Planning module. A (deterministic) planning domain is
a tuple P = 〈V,AD〉, with V a finite set of boolean state
variables and AD a set of action descriptions (e.g., in terms
of preconditions and effects over V ). A state W of P is a
(total) assignment to the variables in V , represented as a set
W ∈ 2V , s.t.W ∈ V is true iffW ∈ q. Actions are intended
to be executed in a state W and lead to exactly one (in the
deterministic setting) successor state W ′. Given a planning
domain P , an initial state I and a goalG (expressed as a for-
mula over V ), an automatic planner generates, if any, a plan
π = α0, α1, . . . , αn, i.e., a finite sequence of actions that,
when executed from the initial state I , takes P to a state sat-
isfying G. In our setting, the values stored in variables from
V are consistent with the values returned by the sensors in

S1, which observe the environment. In this paper we con-
sider offline planning. However, the proposed approach is
not limited to this case and can be adapted to online plan-
ning and replanning. In this case, the RL agent will adapt
to new plans, and thus new reward machines, through expe-
rience (this requires that changes in plans occur much less
frequently than RL agent’s action executions).

Reinforcement learning module. A Markov Decision
Process (MDP) is a tuple M = 〈S,A, Tr,R〉 containing:
a set S of states; a set A of actions; a transition function
Tr : P (s′|s, a) returning, for every state s and action a, a
probability distribution over the next state s′; and a reward
function R : S × A × S → < that specifies the reward
(a real value) received by the agent when transitioning from
state s to state s′ by applying action a. The states S of the
MDP are observed with a set of sensors S2 that are in gen-
eral different from those in S1, used at the planning level. A
solution to an MDP is a function ρ : S 7→ A, called policy,
assigning an action to each state. The value of a policy ρ at
state s, denoted vρ(s), is the expected sum of the rewards
obtained when starting at state s and selecting actions based
on ρ (possibly discounted by a factor γ, with 0 ≤ γ ≤ 1).
Reinforcement learning agents are designed to find optimal
polices over MDPs.

Reward machine. In this paper, planning and learning are
integrated through the definition of a reward machine (Icarte
et al. 2018) over the state variables V . This machine acts as
a runtime monitor observing the running environment from
the same (high-level) perspective as the planning module,
and sending suitable signals σ to the learning module, de-
pending on the advancement of the environment state wrt the
plan π returned by the planning module. Formally, a reward
machine is a tuple RM = 〈Q, q0, δq, δr〉, where: Q is a fi-
nite set of states; q0 ∈ Q is an initial state; δq : Q×2V 7→ Q
is a state-transition function; and δr : Q × Q 7→ < is a
reward-transition function. The reward machine is automat-
ically generated from a plan π, as described in (Leon Illanes
et al. 2019). However, in contrast with that work, we do not
require: i) to define a (new) joint space state including both
V from the planning module and S from the learning mod-
ule, or ii) to explicitly relate S and V . Consequently, our
RM is defined by only considering elements at the plan-
ning level (i.e., only using the state variables V captured by
sensors S1), without relating them to states S and actions
A used by the learning agent. More specifically, Qπ ⊆ 2V

contains all the states traversed during the execution of plan
π, q0 = I is the initial state, δq is defined over transitions of
state variables in V and δr is associated only to transitions
in Q.

The problem In this paper we address the problem of
learning an optimal policy over the MDP M, using the
architecture described above, in particular without requir-
ing any explicit mapping to connect the various layers. The
proposed solution defines information σ to be shared be-



tween these two modules, that is domain-independent, i.e.,
not based on V or S.

Solution
The solution is based on the creation of a reward machine
that controls the learning process of the RL agent by us-
ing only domain-independent signals. Below, we describe
the steps to generate the machine and the use of options as-
sociated with it.

Reward machine generation
The reward machine is automatically obtained by first deriv-
ing a transition graph from the plan π generated by the plan-
ner and then by associating reward values with state transi-
tions. Specifically, a plan π can be transformed into a tran-
sition graph Tπ = 〈Qπ, q0π, Eπ〉 where: Qπ ⊆ 2V is the set
of states traversed during the execution of π over the plan-
ning domain P; q0π = I ∈ Qπ is the initial state of the
planning problem; and Eπ ⊆ Qπ × Qπ is the set of edges
(i.e., the actions occurring in π) connecting two states inQπ ,
according to the execution of π. By exploiting the reasoning
capabilities of the planning system, it is possible to associate
each state q ∈ Qπ with a formula φ(q) over state variables V
denoting the set of states that can be reached after the execu-
tion of the plan up to that state. Since we focus on classical
planners generating sequential plans, the transition graph Tπ
is a linear graph with initial node I , one edge for each action
αi, and a final node where the goal G is satisfied.

A reward machine RMπ can now be derived from the
transition graph Tπ by just adding a mechanism to asso-
ciate rewards with state transitions. A straightforward im-
plementation consists in assigning a high positive rewards
to the transitions reaching a goal state and zero to the
other transitions. Thus, RMπ = 〈Qπ, q0π , δq, δr〉, where
δq(q, φ(q

′)) = q′ iff (q, q′) ∈ Eπ and φ(q′) denotes the set
of states denoted by the formula φ(q′) (i.e., states reached af-
ter the execution of the plan up to state q′), and δr(q, q′) > 0
if q′ ∈ G is a goal state, 0 otherwise. In practice, forms of
reward shaping applied to the reward machine can help in
speeding up the learning process (Camacho et al. 2019).

Use of the reward machine for RL
The reward machine continuously monitors the evolution of
the plan and reports to the underlying RL agent the infor-
mation necessary to guarantee that the RL agent would con-
verge to a policy that will reach a goal state. To this end, the
RM checks occurrence of a transition δq(qt, φ(qt+1)) =
qt+1 in the current state qt. When φ(qt+1) becomes true
(as observed through sensors S1), then a state transition is
detected and communicated to the RL agent. Upon detect-
ing a state-transition, the RM performs the following op-
erations: 1) updates current and past states: qt−1 ← qt,
qt ← qt+1, 2) sends signal σt = 〈q̂t, rt〉 to the RL agent,
where: q̂t is an encoding of the current machine’s state qt,
and rt = δr(qt−1, qt) is the reward value associated with
the current machine’s transition.

Importantly, observe that the encoding q̂t can be any,
as long as not expressed in terms of V , but in a domain-

independent way. For example, it can be an integer corre-
sponding to the index of qt in some enumeration of Qπ .

In order to accept such information, the RL agent must be
extended with a single variable to represent the encoding of
the state of the reward machine (for example, an integer vari-
able) and must take into account additional rewards coming
from the reward machine. Therefore, the RL agent will act
on a new MDP M′ = 〈S × Q̂, A, Tr′, R′〉, where S × Q̂
is the extended space state including the encoding Q̂ of the
state of the reward machine (e.g., an integer value), Tr′ and
R′ are the extended transition and reward functions that are
unknown to the agent and thus we do not need to specify
them. Notice that R′ is extended by summing rewards rt
coming from the reward machine, in addition to the rewards
coming from the environment. In order to guarantee reach-
ing plan goals, we require rewards coming from the reward
machine to be (significantly) higher than the rewards coming
from the environment. When achieving the planning goal is
the only objective of the agent, we can set to zero all the
rewards coming from the environment.

We observe that the notion of RMs is essentially analo-
gous to that of Restraining Bolts (RB) proposed in (De Gi-
acomo et al. 2019), i.e., runtime monitors offering rewards
when favorable state transitions occur. In fact, the whole set-
ting we consider here is analogous to that of (De Giacomo
et al. 2019), thus we can take advantage of the results re-
ported there. In particular, Th. 6 states that if the RL agent
can accept rewards from the RB and can keep track of the
RB current state, then any RL algorithm is successful in
making the agent learn an optimal policy that enforces the
RB (i.e., that achieves a goal state, in our case). Since, as it
can be easily seen, the MDPM′ defind above captures ex-
actly this situation (the reward includes the RM’s and the
agent state is extended to accommodate a representation of
the current RM state), it turns out that we can learn an op-
timal policy by operating onM′.

Automatic sub task decomposition
In this paper we follow the sub-task decomposition induced
by the reward machine, as proposed in (Icarte et al. 2018),
by associating different q functions to the states of theRM.
However, as a difference with QRM algorithm proposed in
(Icarte et al. 2018), in this work we focus on single task sce-
narios and we use an on-policy method. Possible use of off-
policy methods to learn in parallel multiple reward machines
associated to different tasks is left as future work.

Moreover, in our framework, we exploit domain-
independent specifications of the RM and of the RL agent
to implement a mechanism to enable/disable exploration for
each sub-task, in order to speed-up convergence. This mech-
anism is similar to options (Sutton, Precup, and Singh 1999)
or other techniques for learning sub-tasks in hierarchical RL
(Hengst 2010)

In our implementation, sub-tasks are defined as pairs of
transition (qt−1, qt) of theRM and the RL agent can detect
start and end of a sub-task from the signals σ emitted by the
RM. Therefore, each signal received by the RL agent from
the RM indicates the end of the previous sub-task and the



start of a new one. At this moment, the RL agent can de-
cide to enable/disable exploration for this sub-task until the
next signal. When exploration is disabled, the agent actually
exploits the current policy to achieve the current sub task,
while when exploration is enables, the agent learns how to
improve its policy for the current sub task. This mechanism
allows for speeding up the learning process by avoiding ex-
ploration steps for sub tasks for which the current policy is
good enough (or optimal).

We can define different criteria for deciding when to en-
able/disable exploration for sub tasks, ranging from ε-greedy
to more informed probabilistic selections. Possible criteria
include: A) a constant ε-greedy approach, B) a variable ε-
greedy approach considering the number of visits of the tran-
sition (qt−1, qt), C) a probabilistic choice based on percent-
age of success in the transition (qt−1, qt). In this paper, we
focus on evaluation of criterion C, since we consider envi-
ronments with failure states in the reward machine that pre-
vent the agent to proceed towards the goal and thus make the
percentage of success in a transition a relevant choice.

The full procedure for extending a RL algorithm to con-
trol sub task exploration is described through the following
snippets of algorithms. Here we refer to an on-policy method
where the decision of enabling/disabling exploration for a
sub task is applied to the policy being learned.

We make use of a variable exploration ON that denotes
whether exploration (i.e., choosing actions not only accord-
ing to the best values of the current policy) is enabled for
the current task or not. This choice is kept for the entire exe-
cution of the current sub task. On receiving a message from
the reward machine, the agent chooses how to operate for
the next sub task.

Variable exploration ON // exploration is enabled

Function choose action():
if exploration ON then

ε-greedy choice
else

choose best action

Function on receive(σt):
exploration ON = subtask expl criterion()

Function subtask expl criterion():
p = Success(qt−1, qt)/V isits(qt−1, qt)

return random value(0, 1) > p

Experimental results
To show the effectiveness of the proposed method we per-
formed some experiments in three settings already used in
previous works in RL: Breakout, Sapientino and Minecraft.
These experimental scenarios have been used in (De Gia-
como et al. 2019) to evaluate restraining bolts, while here
we consider a more general setting in which reward ma-
chines are generated by automated planning procedures. The
tasks to be learned (see (De Giacomo et al. 2019) for de-
tails) require the agents to perform sequences of actions.

The problems can be easily modelled with a planning lan-
guage and corresponding plans can be generated by suit-
able planners. More specifically, in Breakout we consider
the goal of breaking the columns of bricks in a given order
(e.g., from left to right), so the high-level plan is a sequence
of actions break column i. In Sapientino, a particular se-
quence of actions (bip) must be executed according to the
colors of the cells in which the little robot is, so the plan is
a proper sequence of goto xy and bip actions. Finally, the
goal of Minecraft is to achieve 10 sub-goals by combining
proper sequences of actions that must be executed in the en-
vironment at proper locations.

Notice that in these examples, state variables observed
at the different layers (reward machine and RL agent) are
disjoint (more details) below, but we do not need to mod-
ify the state representations of the RL agent according to
the specific reward machine. In order to use existing algo-
rithms (e.g., QRM (Icarte et al. 2018)) in these domains, ad-
ditional modelling and modifications are necessary: 1) ex-
tend the state representation of the RL agent by considering
the state variables used in the reward machine, 2) provide the
labelling function bewteen states of the RL agent and state
variables of theRM.

More specifically, in Breakout the state representation
contains the paddle position, ball position and velocity, but
not the configuration of the bricks, while available actions
are just to move left or right. In Sapientino and Minecraft,
the agent only knows its position in the grid (but not the
color of the cells for Sapientino or the presence of resources
or tools for Minecraft) and actions are one-step movements
on the grid.

The plots in Figure 2 show learning performance in the
three domains.

In the top row, we see an example of different reward ma-
chines applied to the same agent. The Breakout agent can
move in the environment to intercept a ball and break the
bricks in the environment. The two reward machines differ
in the plan they represent: in the first case (plot in the left),
the plan is to break four columns from left to right, in the sec-
ond case (plot in the right), the plan is to break the columns
from right to left.

In the middle row we show an example of using the same
reward machine on two different agents: the reward machine
drives the agents to learn a policy in which cells of the grid
are visited in a specified order, the two Sapientino agents dif-
fer in the state representations and actions available. In par-
ticular, the first agent (plot on the left) is an omni-directional
robot moving in the four cardinal directions, while the sec-
ond agent (plot on the right) is a differential drive robot
moving forward/backward and turning left/right. The second
agent includes also orientation as state variable. As shown in
the figure, both agents are able to learn a policy according to
the same reward machine, although with different low-level
capabilities.

Finally, the bottom row shows the same reward machine
applied to different Minecraft agents: omni-directional and
differential drive. The state representation of the RL agent
for Minecraft is exactly the same as the one used in Sapi-
entino, while the set of actions are different in the two cases.



Figure 2: Average reward over experimental time. Breakout (top), Sapientino (middle), Minecraft (bottom), with sub task
decomposition (blue), without sub task decomposition (red).

Notice that an agent with the same state representation can
learn Sapientino or Minecraft tasks only based on informa-
tion received by the reward machine without requiring to
change its state representations.

In all the situations, the RL agent learns a policy that
achieve the goal as specified by the planning module. More-
over, learning is improved when using automatic sub task
decomposition (blue curves) with respect to the standard RL
algorithm (red curves).

These experimental results thus show convergence to a
policy reaching the goal and improved performance when
using sub task decomposition. Moreover, the results have
been obtained in a modular way, as results reported in left
and right plots have been obtained by just composing dif-
ferent instances of reward machine and RL agent, without
changing their internal representations.

Finally, consider that, when explicit mapping is required,
any combinatin of RM and RL agent requires a specific
modeling effort. Thus, to execute the 6 experiments reported
above, a total of 12 (6RM + 6 RL) components must be de-

vised. Our approach, instead, allows for re-using and com-
bining existing components, without any additional model-
ing effort. Specifically, wrt the 6 experiments above, we have
defined only 3 RL agents (1 for Breakout and 2 for both
Sapientino and Minecraft) and 4RM (2 for Breakout and 1
for each other problem), for a total of 7 components.

Conclusion
Integration of planning and learning can benefit from mod-
ularity and separation of design and implementation of the
relative components. In this paper, we have shown that state
and action representations of the two layers can be kept com-
pletely separated and only domain-independent signals are
needed to ensure to drive the learning process through a de-
sired plan to reach a given goal.

Future work includes extension of the formalism to more
complex forms of plans, such a partial order plans, hierarchi-
cal task networks, conditional plans, and plans represented
through Petri nets that would allow to generate compact re-



ward machines for compex tasks.
We believe that design and development of modular plan-

ning and learning components will be convenient in many
application domains, making the integration of planning and
learning easier and more effective.

Acknowledgments
This work is partially supported by the ERC Advanced
Grant WhiteMech (No. 834228), by the EU ICT-48 2020
project TAILOR (No. 952215), and in part by Sapienza Uni-
versity of Rome through the Project DRAPE: Data-awaRe
Automatic Process Execution.

References
Abbeel, P.; Quigley, M.; and Ng, A. Y. 2006. Using inaccu-
rate models in reinforcement learning. In Machine Learn-
ing, Proceedings of the Twenty-Third International Con-
ference (ICML 2006), Pittsburgh, Pennsylvania, USA, June
25-29, 2006, 1–8. doi:10.1145/1143844.1143845. URL
https://doi.org/10.1145/1143844.1143845.

Andreas, J.; Klein, D.; and Levine, S. 2017. Modular Mul-
titask Reinforcement Learning with Policy Sketches. In
ICML, volume 70 of Proceedings of Machine Learning Re-
search, 166–175. PMLR.

Brafman, R. I.; and Tennenholtz, M. 2002. R-MAX - A
General Polynomial Time Algorithm for Near-Optimal Re-
inforcement Learning. J. Mach. Learn. Res. 3: 213–231.
URL http://jmlr.org/papers/v3/brafman02a.html.

Camacho, A.; Icarte, R. T.; Klassen, T. Q.; Valenzano, R. A.;
and McIlraith, S. A. 2019. LTL and Beyond: Formal Lan-
guages for Reward Function Specification in Reinforce-
ment Learning. In Proceedings of the Twenty-Eighth In-
ternational Joint Conference on Artificial Intelligence, IJ-
CAI 2019, Macao, China, August 10-16, 2019, 6065–6073.
doi:10.24963/ijcai.2019/840. URL https://doi.org/10.24963/
ijcai.2019/840.

De Giacomo, G.; Iocchi, L.; Favorito, M.; and Patrizi,
F. 2019. Foundations for Restraining Bolts: Reinforce-
ment Learning with LTLf/LDLf Restraining Specifications.
In Proceedings of the Twenty-Ninth International Confer-
ence on Automated Planning and Scheduling, ICAPS 2018,
Berkeley, CA, USA, July 11-15, 2019., 128–136.

Efthymiadis, K.; and Kudenko, D. 2014. A comparison of
plan-based and abstract MDP reward shaping. Connect.
Sci. 26(1): 85–99. doi:10.1080/09540091.2014.885283.
URL https://doi.org/10.1080/09540091.2014.885283,https:
//www.tandfonline.com/doi/full/10.1080/09540091.2014.
885283.

Grounds, M. J.; and Kudenko, D. 2007. Combining Rein-
forcement Learning with Symbolic Planning. In Adaptive
Agents and Multi-Agent Systems III. Adaptation and Multi-
Agent Learning, 5th, 6th, and 7th European Symposium,
ALAMAS 2005-2007 on Adaptive and Learning Agents and
Multi-Agent Systems, Revised Selected Papers, 75–86. doi:
10.1007/978-3-540-77949-0\ 6. URL https://doi.org/10.
1007/978-3-540-77949-0\ 6.

Grzes, M.; and Kudenko, D. 2008. Plan-based reward shap-
ing for reinforcement learning. In Proc. of the 4th Interna-
tional IEEE Conference on Intelligent Systems, 10–22.
Hengst, B. 2010. Hierarchical Reinforcement Learning,
495–502. Boston, MA: Springer US. ISBN 978-0-387-
30164-8. doi:10.1007/978-0-387-30164-8 363. URL https:
//doi.org/10.1007/978-0-387-30164-8 363.
Icarte, R. T.; Klassen, T. Q.; Valenzano, R. A.; and McIl-
raith, S. A. 2018. Using Reward Machines for High-
Level Task Specification and Decomposition in Reinforce-
ment Learning. In Proceedings of the 35th Interna-
tional Conference on Machine Learning, ICML 2018, Stock-
holmsmässan, Stockholm, Sweden, July 10-15, 2018, 2112–
2121. URL http://proceedings.mlr.press/v80/icarte18a.html,
http://proceedings.mlr.press/v80/icarte18a/icarte18a.pdf.
Leon Illanes, L.; Yan, X.; Icarte, R.; and McIlraith, S. 2019.
Symbolic Planning and Model-Free Reinforcement Learn-
ing: Training Taskable Agents. In Proc. of 4th Multidis-
ciplinary Conference on Reinforcement Learning and De-
cision Making (RLDM). URL http://www.cs.toronto.edu/
∼lillanes/papers/IllanesYTM-rldm2019-symbolic.pdf.
Leonetti, M.; Iocchi, L.; and Stone, P. 2016. A synthesis
of automated planning and reinforcement learning for effi-
cient, robust decision-making. Artificial Intelligence 241:
103–130. doi:10.1016/j.artint.2016.07.004. URL https:
//doi.org/10.1016/j.artint.2016.07.004.
Sutton, R. S. 1990. Integrated Architectures for Learn-
ing, Planning, and Reacting Based on Approximating Dy-
namic Programming. In Machine Learning, Proceedings
of the Seventh International Conference on Machine Learn-
ing, Austin, Texas, USA, June 21-23, 1990, 216–224. doi:
10.1016/b978-1-55860-141-3.50030-4. URL https://doi.
org/10.1016/b978-1-55860-141-3.50030-4.
Sutton, R. S.; and Barto, A. G. 2018. Reinforcement Learn-
ing: An Introduction. The MIT Press, second edition. URL
http://incompleteideas.net/book/the-book-2nd.html.
Sutton, R. S.; Precup, D.; and Singh, S. P. 1999. Between
MDPs and Semi-MDPs: A Framework for Temporal Ab-
straction in Reinforcement Learning. Artif. Intell. 112(1-
2): 181–211. doi:10.1016/S0004-3702(99)00052-1. URL
https://doi.org/10.1016/S0004-3702(99)00052-1.
Yang, F.; Lyu, D.; Liu, B.; and Gustafson, S. 2018. PEORL:
Integrating Symbolic Planning and Hierarchical Reinforce-
ment Learning for Robust Decision-Making. In Proceedings
of the Twenty-Seventh International Joint Conference on Ar-
tificial Intelligence, IJCAI 2018, July 13-19, 2018, Stock-
holm, Sweden, 4860–4866. doi:10.24963/ijcai.2018/675.
URL https://doi.org/10.24963/ijcai.2018/675.


