
Exploiting Different Levels of Abstractions for Sample
Efficient Reinforcement Learning
Roberto Cipollone, Giuseppe De Giacomo, Marco Favorito, Luca Iocchi and
Fabio Patrizi

Sapienza University of Rome, Italy

Abstract
One of the main issues that limit the application of Reinforcement Learning to real robots is the large
number of samples that common algorithms require. In this work, we specifically address the issue of
sample efficiency. In the learning framework that we propose, a complex task on a target environment is
simplified via multiple levels of abstraction, through the simulation of simplified models. These levels
are intentionally coupled in a loose way, as they only require a mapping function from the states of
one model to those of its abstraction. This hierarchy allows us to exploit the value function learnt from
the coarser levels and guide the exploration of the learner, by means of reward shaping techniques.
We assess the correctness of the approach and we experimentally show its effectiveness at improving
convergence speed in case of sparse rewards.

1. Introduction

The large number of samples that most Reinforcement Learning (RL) algorithms require strongly
limits its applicability to robotics, where the interaction with the environment is costly and
comes with associated risks. This work is motivated by the need of improving sample efficiency
in RL. We aim at developing a technique which is particularly effective with sparse rewards.

Following a long recognized approach [1, 2], we consider state abstractions and hierarchical
decompositions, where the original problem is simplified into its essential components. In
particular, we allow the original task to be simplified into one or more levels of abstraction.
The novelty of this approach lies in how such abstractions should be related and exploited
for learning. In particular, we adopt reward shaping techniques to reuse the information
collected from abstract environments, and we ensure that the desirable optimality guarantees
are preserved, even in the episodic setting.

As required, this abstraction hierarchy allows to transfer part of the training effort from the
costly environments to the simulated abstractions. Specifically, our method allows to learn
each of those models with a distinct algorithm. In fact, it can be coupled with any off-policy
RL algorithm, appropriate for a specific state-action space, even those designed for Neural
Networks.

AIRO 2021, workshop of the 20th International Conference of the Italian Association for Artificial Intelligence
© 2021 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

2. The framework

Consider an environment in which experience is costly to obtain. This might be a realistic
simulation of the agent’s interaction, or an actual environment in which a physical robot is
acting. This is our ground MDP ℳ0, that we aim to solve while minimizing the number of
interactions with the environment. Instead of learning on this MDP directly, we choose to solve
a simplified, related problem, that we call the abstract MDP1. Once solved, its solution will be
used as a heuristic to speed up learning in the target MDP. This idea is not limited to a single
abstraction. Indeed, we consider a hierarchy of related MDPsℳ0,ℳ1, … ,ℳ𝑛, of decreasing
difficulty, where the experience acquired by an expert acting in ℳ𝑖 can be exploited to speed
up learning in the previous one, ℳ𝑖−1.

Associated to each MDP abstraction ℳ𝑖, we also define a mapping function 𝑓𝑖 as a surjection
𝑓𝑖 ∶ 𝒮𝑖 → 𝒮𝑖+1, which maps states of each model ℳ𝑖 to states of its direct abstraction ℳ𝑖+1.
Since each MDP in the sequence should be easier to solve than it’s predecessor, we know that
|𝒮𝑖| ≥ |𝒮𝑖+1|. Therefore, the mapping induces a partition over 𝒮𝑖, where multiple states are
mapped through 𝑓𝑖 to a single state inℳ𝑖+1.
Starting from an MDP to simplify, abstract models and mapping functions are obtainable

by devising a suitable relaxation of the environment dynamics. For example, in a navigation
scenario, an abstraction could contain actions that allow to just “leave the room”, instead of
navigating with lower-level controls. Importantly, the relation between such different action
spaces doesn’t need to bemodelled. Note that the connection between amodel and its abstraction
is intentionally loose, so that little constraints are posed in the definition of each mapping.

2.1. Exploiting the knowledge

Consider a hierarchy of abstractionsℳ0, … ,ℳ𝑛 togetherwith theirmapping functions 𝑓0, … , 𝑓𝑛−1.
The learning process proceeds incrementally, training in order from the easiest to the hardest
one. At each level ℳ𝑖, we can exploit the knowledge acquired from its abstraction ℳ𝑖+1, in
order to speed up learning. We do so by applying a RL technique called Reward Shaping.

Reward shaping (RS) [4] refers to the modification of the original rewards of an MDP, through
the addition of a reward shaping function, i.e. 𝑅s(𝑠, 𝑎, 𝑠′) ≔ 𝑅(𝑠, 𝑎, 𝑠′) + 𝐹(𝑠, 𝑎, 𝑠′). Potential-Based
Reward Shaping [5] (simply called “Reward Shaping” from now on), defines the shaping function
in terms of a potential function Φ ∶ 𝒮 → ℝ, as follows:

𝐹(𝑠, 𝑎, 𝑠′) ≔ 𝛾Φ(𝑠′) − Φ(𝑠) (1)

In the infinite horizon case, this choice guarantees that the optimal policy of the MDP with
reward function 𝑅s is the same as the one for the original MDP. Since the optimum is not
modified, reward shaping can only provide an initial bias to the learning algorithm. In fact, it
has been shown in [6] that learning under the shaping rewards of Equation (1) is equivalent to
learning under a modified Q-function initialization: 𝑄′

0(𝑠, 𝑎) ≔ 𝑄0(𝑠, 𝑎) + Φ(𝑠).
Now, assume that model ℳ𝑖+1 has been solved already, and let 𝑉 ∗

𝑖+1 ∶ 𝒮𝑖+1 → ℝ be its
optimal value function. In order to speed up learning, we apply reward shaping toℳ𝑖, with the

1We follow the nomenclature from [3].

following potential:
Φ𝑖(𝑠) ≔ 𝑉 ∗

𝑖+1(𝑓𝑖(𝑠)) for 𝑠 ∈ 𝒮𝑖 (2)

With this choice, the potential of a state is evaluated according to how desirable the correspond-
ing state in the abstract model is. This is beneficial, as high potentials are associated to high
state-action value initializations.

2.2. Policy invariance

Potential-Based Reward Shaping has been explicitly designed not to alter the optimal policies.
In fact, in case of an infinite horizon, as mentioned above, but also when episodes always
terminate in a zero-reward absorbing state, this property is guaranteed [5]. However, in RL, we
often organize learning in episodes of finite length, so to diversify the agent experiences. Thus,
in the episodic setting, these guarantees do not hold anymore, and the optimal policy may be
altered [7].

The solution proposed by [7] is to assume, for every terminal state, the null potentialΦ(𝑠𝑛) = 0,
as this would preserve the original returns. However, this is not always a desirable solution.
First, let’s consider a Goal MDP, specifically, one with a null reward function everywhere,

except when transitioning to a distinct goal state. Regardless of the potential, we can show that
all finite trajectories which do not contain the goal state are associated to the same return. This
means that the return-invariant RS of [7] is not able to provide a persistent exploration bias to
the agent, as it cannot guide it toward a goal that the agent is not able to reach initially. Our
experiments also confirmed that the choice Φ(𝑠𝑛) = 0 did not help to converge on very sparse
rewards (this is in line with the experiments from [8]).

Our solution Since we deliberately adopt a form of RS which is not return invariant, we
devised a technique to recover the original optimality guarantees. This method can be integrated
with any off-policy RL algorithm. We just consider Q-learning for the present discussion.

Let’s consider ℳ𝑖 = ⟨𝒮𝑖, 𝒜𝑖, 𝑇𝑖, 𝑅𝑖, 𝛾𝑖⟩, the MDP at the 𝑖th level of abstraction. We define
ℳs

𝑖 = ⟨𝒮𝑖, 𝒜𝑖, 𝑇𝑖, 𝑅𝑠𝑖 , 𝛾𝑖⟩ as the MDP associated toℳ𝑖, with the following reward function:

𝑅s𝑖 (𝑠, 𝑎, 𝑠′) = 𝑅𝑖(𝑠, 𝑎, 𝑠′) + Φ𝑖(𝑠′) − Φ𝑖(𝑠) (3)

where Φ𝑖 is defined according to (2). As we don’t need to require thatℳs
𝑖 generates the same

returns as ℳ𝑖, the missing 𝛾𝑖 term from the classic RS equation (1) is not an issue. Rather, it has
been even considered experimentally helpful [9, chap. 2].

Our method proceeds as follows. When learning on the 𝑖th level of abstraction, we perform
updates on two distinct Q-function estimates:

• The first, that we call the active agent, is in charge of estimating 𝑄s∗, i.e. the optimal
Q-value function of ℳs

𝑖 , the MDP with rewards from (3).
• The second, that we call the passive agent, is an estimate for 𝑄∗, i.e. the optimal Q-value
function of the original MDP ℳ𝑖.

The active agent is the only that executes actions in the environment. Since its advantage-based
policy depends on 𝑄s∗, with respect to this agent, the algorithm is exactly Q-learning. The

second estimate, instead, is updated from the same state-action transitions as those observed by
the active agent, with the only difference that rewards are generated from the original 𝑅𝑖(𝑠, 𝑎, 𝑠′).
Most importantly, both estimates converge to the desired quantities, as we state here:

Theorem 1. Let �̂�s
𝑖 and �̂�𝑖 be, respectively, the Q-value function estimations of ℳs

𝑖 and ℳ𝑖,
updated as described above. Then, under the same assumptions as those for the convergence of the
Q-learning algorithm, both �̂�s and �̂�𝑖 converge to 𝑄s∗ and 𝑄∗, respectively.

Specifically, this means that the passive agent converges to the optimal policy for the original
task. Therefore, its value function 𝑉 ∗

𝑖 (𝑠) = max𝑎∈𝒜𝑖 𝑄
∗
𝑖 (𝑠, 𝑎) can be used, in turn, in the compu-

tation for the potential in the next level of abstraction to train. Finally, when training on the
ground model ℳ0, we consider 𝑄∗

0 the desired result of training.

3. Experiments

In order to show the practical applicability of the proposed method in robotics domains, we
consider the following behaviour in a office-like scenario: the agent should reach the entrance
of each room in sequence; if a door is open, the agent should enter that room and interact
with the person inside, if present. The agent is only positively rewarded only when the task is
completed.

Temporally-extended goals Interesting behaviours always contain some constraints like
the ones above, with the form “if this happened then …”. Naively encoding such tasks for RL
would produce non-Markovian reward functions. Instead, the correct approach is to adopt
the techniques from [10, 11, 12, 13], which provide an appropriate reduction to an MDP. The
resulting model has a composite state space 𝒮𝑖 × 𝒬, where the original states 𝒮𝑖 are specific of
each abstraction level, and 𝒬 tracks the relevant information with respect to the task. For our
purposes, we may just consider them as MDPs. We’ve chosen such class of processes as they
are a perfect example of sparse rewards with a slow convergence. Furthermore, they they are
really relevant and applicable to robotics, where non-trivial behaviours are most interesting.

Abstraction levels We choose to model the environment dynamics in three levels of abstrac-
tionℳ0,ℳ1,ℳ2. In the most abstract MDP,ℳ2, the states represent few interesting locations,
such as doors and rooms. The actions 𝒜2 ≔ {Go1, … ,Go𝑛, Interact} allow to reach each of those
locations in one step or to start an interaction. Inℳ1, instead, the agent can move in discrete
steps along the four cardinal directions within a simplified map. Finally, atℳ0, we preserve
the metric structure of the environment, and the robot state (𝑠𝑥, 𝑠𝑦, 𝑠𝜃) ∈ 𝒮0 is constituted by the
agent’s mobile base position and orientation in space. Actions are now relative motions on the
plane. The mapping functions 𝑓1, 𝑓0 are simple discretizations of the plane and associations to
the interesting locations of ℳ0, respectively.

Results The plot in Figure 1a compares the convergence speed of a passive agent, that is
guided via reward shaping with our approach (orange line), with the baseline Q-learner (blue
line). Both are trained with the same parameters, for the same task. Rewards from this plot are

0 2,000 4,000 6,000 8,000
−70

−65

−60

episodes

re
tu
rn

(a) Training convergence on ℳ1. Cumulative dis-
counted return, averaged over 10 runs.

0 1 2 3
⋅105

0

2

4

6

8

training step

re
w
ar
ds

(b) Training convergence on ℳ0. Episode total re-
wards, averaged over 5 runs.

Figure 1: Convergence speed for an agent without (blue) and with reward shaping applied (orange).

negative, as they give a reasonable improvement to the performances of the baseline [14]. In
Figure 1b we show the same training comparison for the more complex MDP levelℳ0, which
was trained with Dueling DQN [15]. The advantage of the informed agent is much more evident
in this last experiment, where the large state space contributes to the sparsity of rewards.

4. Related works

The field of Hierarchical RL specifically studies efficiency of algorithms in presence of abstrac-
tions. Some classic approaches are MAXQ [16], HAM [17] and the Options framework [18],
which are algorithms specifically designed to work with all abstractions. In contrast, our method
allow greater flexibility on how solutions for each level should be computed.
In other works, [19, 3, 20], the authors identify possible relations between MDPs and their

abstractions. However, the abstractions that we consider here are mostly naive partitioning
of contiguous regions, and they would hardly satisfy the assumptions hypothesized in them.
Our abstractions resemble those of [21]. Simplified models involving both states and actions
have been considered in [22], which defines relations that would be interesting to use when
formalizing our hierarchy. Works as [23, 24] explore how abstractions for RS could be learnt
automatically. Instead, we focus on the actual effectiveness of shaping. Recently, in [8], the
authors increased the efficacy of RS by giving up desirable optimality guarantees.

5. Conclusion

The method that we presented allows to reuse the information learnt by an expert agent from
the simulated environments to speed up learning in the target environment. Although some
additional modelling effort is required, the abstraction hierarchy can be used to speedup learning
in a variety of tasks. Furthermore, each level is allowed to have a distinct action space, most
appropriate to each granularity level, and the relations between actions of different levels don’t
need to be modelled. Finally, as we’ve seen from our experiments, the method is particularly
effective for MDPs with sparse rewards.

References

[1] P. Dayan, G. E. Hinton, Feudal reinforcement learning, in: S. J. Hanson, J. D. Cowan,
C. L. Giles (Eds.), Advances in Neural Information Processing Systems 5, NIPS Conference,
Morgan Kaufmann, 1992, pp. 271–278.

[2] M. Hauskrecht, N. Meuleau, L. P. Kaelbling, T. L. Dean, C. Boutilier, Hierarchical solution of
markov decision processes using macro-actions, in: UAI ’98: Proceedings of the Fourteenth
Conference on Uncertainty in Artificial Intelligence, University of Wisconsin Business
School, 1998, pp. 220–229.

[3] L. Li, T. J. Walsh, M. L. Littman, Towards a unified theory of state abstraction for mdps, in:
ISAIM, 2006, pp. 531–539.

[4] J. Randløv, P. Alstrøm, Learning to drive a bicycle using reinforcement learning and
shaping, in: J. W. Shavlik (Ed.), Proceedings of the Fifteenth International Conference on
Machine Learning (ICML 1998), Morgan Kaufmann, 1998, pp. 463–471.

[5] A. Y. Ng, D. Harada, S. J. Russell, Policy invariance under reward transformations: Theory
and application to reward shaping, in: ICML, San Francisco, CA, USA, 1999, p. 278–287.

[6] E. Wiewiora, Potential-based shaping and q-value initialization are equivalent, JAIR 19
(2003) 205–208.

[7] M. Grzes, Reward shaping in episodic reinforcement learning, in: AAMAS, 2017, p.
565–573.

[8] I. Schubert, O. S. Oguz, M. Toussaint, Plan-based relaxed reward shaping for goal-directed
tasks, in: 9th international conference on learning representations, ICLR 2021, virtual
event, austria, may 3-7, 2021, OpenReview.net, 2021.

[9] M. Grzes, Improving exploration in reinforcement learning through domain knowledge
and parameter analysis, Ph.D. thesis, University of York, 2010.

[10] R. I. Brafman, G. De Giacomo, F. Patrizi, LTLf/LDLf non-Markovian rewards, in: AAAI,
2018, pp. 1771–1778.

[11] R. T. Icarte, T. Klassen, R. Valenzano, S. McIlraith, Using reward machines for high-level
task specification and decomposition in reinforcement learning, in: ICML, 2018, pp.
2107–2116.

[12] G. De Giacomo, L. Iocchi, M. Favorito, F. Patrizi, Foundations for restraining bolts: Re-
inforcement learning with LTLf/LDLf restraining specifications, in: ICAPS, 2019, pp.
128–136.

[13] G. De Giacomo, R. De Masellis, F. M. Maggi, M. Montali, Monitoring constraints and
metaconstraints with temporal logics on finite traces, CoRR abs/2004.01859 (2020).

[14] S. Koenig, R. G. Simmons, The effect of representation and knowledge on goal-directed
exploration with reinforcement-learning algorithms, Machine Learning 22 (1996) 227–250.

[15] Z. Wang, T. Schaul, M. Hessel, H. van Hasselt, M. Lanctot, N. de Freitas, Dueling network
architectures for deep reinforcement learning, in: ICML, volume 48, JMLR.org, 2016, pp.
1995–2003.

[16] T. G. Dietterich, Hierarchical reinforcement learning with the maxq value function
decomposition, JAIR 13 (2000) 227–303.

[17] R. Parr, S. Russell, Reinforcement learning with hierarchies of machines, Advances in
neural information processing systems (1998) 1043–1049.

[18] R. S. Sutton, D. Precup, S. Singh, Between mdps and semi-mdps: A framework for temporal
abstraction in reinforcement learning, Artif. Intell. 112 (1999) 181–211.

[19] B. Ravindran, A. G. Barto, Model minimization in hierarchical reinforcement learning,
in: Abstraction, Reformulation and Approximation, 5th International Symposium, SARA
2002, volume 2371 of Lecture Notes in Computer Science, Springer, 2002, pp. 196–211.
doi:10.1007/3-540-45622-8_15.

[20] D. Abel, D. Hershkowitz, M. Littman, Near optimal behavior via approximate state
abstraction, in: Proceedings of The 33rd International Conference on Machine Learning,
volume 48 of Proceedings of Machine Learning Research, PMLR, 2016, pp. 2915–2923.

[21] M. Grześ, D. Kudenko, Online learning of shaping rewards in reinforcement learning,
Neural Networks 23 (2010) 541–550.

[22] D. Abel, N. Umbanhowar, K. Khetarpal, D. Arumugam, D. Precup, M. Littman, Value
preserving state-action abstractions, in: Proceedings of the Twenty Third International
Conference on Artificial Intelligence and Statistics, volume 108 of Proceedings of Machine
Learning Research, PMLR, 2020, pp. 1639–1650.

[23] B. Marthi, Automatic shaping and decomposition of reward functions, in: Machine Learn-
ing, Proceedings of the Twenty-Fourth International Conference (ICML 2007), Corvallis,
Oregon, USA, June 20-24, 2007, volume 227 of ACM International Conference Proceeding
Series, ACM, 2007, pp. 601–608. doi:10.1145/1273496.1273572.

[24] M. Grześ, D. Kudenko, Multigrid reinforcement learning with reward shaping, in: ICANN,
2008, pp. 357–366.

http://dx.doi.org/10.1007/3-540-45622-8_15
http://dx.doi.org/10.1145/1273496.1273572

	1 Introduction
	2 The framework
	2.1 Exploiting the knowledge
	2.2 Policy invariance

	3 Experiments
	4 Related works
	5 Conclusion

