
A Practical Framework for General Dialogue-based
Bilateral Interactions

Seyed Ali Hosseini1, David Minarsch1, and Marco Favorito1,2

1 Fetch.ai, UK
2 Sapienza University of Rome, Italy

{ali.hosseini, david.minarsch, marco.favorito}@fetch.ai

Abstract. For autonomous agents and services to cooperate and interact in multi-
agent environments they require well-defined protocols. A multitude of proto-
col languages for multi-agent systems have been proposed in the past, but they
have mostly remained theoretical or have limited prototypical implementations.
This work proposes a practical realisation of a general framework for defin-
ing dialogue-based bilateral interaction protocols which supports arbitrary agent-
based interactions. Crucially, this work is tightly integrated with a modern frame-
work for the creation of autonomous agents and multi-agent systems, making it
possible to go from protocols’ specification to their implementation and usage
by agents, and enables evaluation of protocols’ effectiveness and applicability in
real-world use cases.

Keywords: Interaction Protocols · Dialogues · General Protocols.

1 Introduction

Motivation Multi-Agent System (MAS) is recognised as a promising paradigm for de-
centralised and ubiquitous computing that involves embedded and distributed devices
interacting with each other [30]. The increasing complexity and scale of these systems
necessitates the development of abstractions and tools that simplify their development
and deployment. This demand gives rise to interaction protocols as a key mechanism
that enables cooperation amongst agents while recognising their individuality in a de-
centralised environment and accommodating their competing interests [14].

Interaction protocols are a useful abstraction which not only help the process of
agent design by limiting the space of all possible states and actions in specific interac-
tions, but also enable analysis of agent-based systems to assess specific properties, for
example checking whether a system could arrive at a deadlock [49].

There are a multitude of protocol languages in the MAS literature based on vari-
ous formal abstractions and mathematical constructs, for example, based on UML [25],
state machines [49,22], trace expressions [18,13], and session types [52]. However, to
the best of our knowledge, they either remain theoretical (e.g. [13]), or have limited
prototypical implementations (e.g. [6,49,52]). As a result, the applicability and effec-
tiveness of interaction protocol systems, as part of agent-based solutions to real-world
problems, are not fully explored.

2 S. A. Hosseini et al.

Requirements There are two fundamental requirements that guide this work. Firstly,
(Req. 1) we are interested in environments which are fully decentralised, a property
often considered integral to MAS itself [14]. Decentralisation refers to the absence of
central authorities that imperatively control aspects of the system (e.g. decision mak-
ing, communication, authorisation, coordination, etc.). In decentralised environments,
interactions are primarily peer-to-peer, without reliance on third-party facilitators. This
assumption immediately distinguishes this work from proposals such as [6,21] in which
interaction protocols are enforced via mediators and middleware.

Secondly, (Req. 2) the framework must be practically realised by an implementation
that is accessible, enabling its application and evaluation in real-world use cases. We
believe that a lack of attention to implementation leads to unexplored aspects of the
system design, or in some cases major oversights. For example, a number of protocols
in the literature are defined with reference to private elements of an agent (e.g. mental
state) [3]. However, it is not entirely clear how such protocols may be implemented and
enforced in practice under standard MAS assumptions.

Contribution and Structure This work resides in a larger body of work by the authors
([32,40,35,33,34]) to bring agent technologies to production by taking advantage of
strategic integration with distributed ledger technologies (DLTs) [47].

In this paper, we propose a general framework for dialogue-based bilateral interac-
tions that use protocols to govern the behaviour of interaction participants. The frame-
work is formally defined and its implementation facilitates its application in real-world
problems. The implementation is integrated into the AEA framework; a modern frame-
work for the development and deployment of agents [34].3 This allows interactions and
protocols to be specified then implemented and used by agents.

After informally describing the setting and highlighting key design issues in Section
2, we formalise the framework in Section 3 and instantiate it to capture a specific inter-
action: bilateral negotiation. We then shift our attention in Section 4 to implementation,
discussing the main components of the framework and the major implementation issues
involved. Section 5 provides a discussion of related works. Finally, Section 6 concludes
and outlines future work.

2 Dialogue-based Bilateral Interactions

We define Bilateral interactions as well-defined high-level interactions between exactly
two players that serve a clear purpose. In the kinds of environment we focus on, players
could be agents, services or humans. Some example are, bilateral negotiations [4], state
channels [31], information-seeking [27] and HTTP request/responses.

The decentralised nature of multi-agent systems, the autonomy of agents, and the
heterogeneity of their designs have all contributed to the established practice of mod-
elling events and interactions amongst agents as messages [15,50,9,20,12]. A dialogue
then structures and encapsulates a series of messages exchanged as part of a single
interaction [38]. There are many dialogue-based approaches [2,4,39,11,37] to various
types of interactions (e.g. negotiation, persuasion, inquiry) [46].

3 The AEA framework’s repository can be found at https://github.com/fetchai/agents-aea

https://github.com/fetchai/agents-aea

A Practical Framework for General Dialogue-based Bilateral Interactions 3

The peer-to-peer nature of communication in fully decentralised environments (see
Req. 1) motivates our focus on bilateral interactions. Of course¸ it also simplifies the
system design and helps us focus our attention on achieving an end-to-end solution in
line with Req. 2. Moreover, bilateral primitives can later be used as the foundation of
multilateral extensions to this work.

Any interaction serves a particular (set of) goal(s), called the interaction’s goal(s).
This is what all participant’s aim to achieve by taking part in the interaction. For in-
stance, the goal of a negotiation is dividing scarce resources amongst multiple parties
[46]. All players in an interaction also have personal goals which may not necessarily
be the same as the interaction’s goal. For instance, in negotiations, each player aims to
maximise its share of the resources.

2.1 Protocols

Protocols specify the bounds within which players in an interaction may operate to
ensure an interaction’s goal(s) are fulfilled [19,28].

A key issue to consider, when designing a concrete implementation of agent inter-
actions, is how players’ adherence to protocols is verified. In particular, anyone who
is observing an interaction must be able to confirm whether or not the players’ actions
conform to the protocol. This idea underpins proposals such as [21,6] which introduce
middle-layer moderator agents that coordinate communications and enforce protocols
on players. However, in decentralised environments, where the absence of such mid-
dleware is entailed, this responsibility may be reliably assigned only to the players
participating in the interaction themselves.

A consequence of the above is that protocols are restricted, in design, to making
reference only to public elements of an interaction [44]. For example, proposals (such
as [3]) which make references, either in syntax or semantics of their protocols, to e.g.
agents’ mental states, private strategies, etc., are in our experience not straightforward to
implement under standard MAS assumptions. Therefore, in this framework, protocols
can only be defined with reference to public elements of an interaction and protocol
adherence is verified by the players of the interaction themselves.

Another key design issue to consider is the assumption of (a)synchronicity in mes-
sage delivery [23]. Many proposals for interaction protocols in the literature assume
synchronous communication for simplicity [25,22]. However, we argue that the uncer-
tainty associated with the communication infrastructure, coupled with agents’ auton-
omy, and the possibility of agents engaging in parallel interactions make synchronous
communication, which blocks some or all other agent processes, detrimental to the
continuity and successful operation of a decentralised MAS. Therefore, in this frame-
work, we do not take the synchronicity assumption on board and address the problems
it causes on the framework level.

3 Framework

We now give a formal description of a general framework for bilateral dialogue-based
interactions and then provide an instantiation that captures bilateral negotiations.

4 S. A. Hosseini et al.

3.1 Bilateral Interactions

The environment is inhabited by players. In practice, a player might be an agent, service,
human, or other entity.

Definition 1. [Player] A finite set A is defined where each a ∈A is a player.

A role is a logical actor in the context of an interaction identified by a name (e.g.
bidder, seller). Players participating in a dialogue are assigned roles (see Definition 11).
This is how protocols apply to specific players in a dialogue instance.

Definition 2. [Role] A set R is defined where any r ∈ R is a role and |R| ∈ {1, 2}.

|R| = 2 means each player has a distinct role and |R| = 1 indicates that both
players have identical roles.

Dialogues progress by players exchanging messages. Before defining a message,
we define the notions of speech-act (see [7]) and their reply structure:

Definition 3. [Speech-act] A set S of speech-acts {s1, . . . , sn} is defined where each
speech-act si is of the form P(c1, . . . , cn) where P is an element of a set P of perfor-
matives, and c1, . . . , cn is a sequence of contents.

Example 1. Examples of speech-acts are inform(φ), offer(ψ), commit(ω), request(ρ1,
. . . , ρ4) where inform, offer, commit, request are performatives and φ, ψ, ω (some in-
formation) and ρ1, . . . , ρ4 (some resources) are contents.

Definition 4. [Reply] A function Reply : S −→ 2S specifies the valid replies to each
speech-act.

Example 2. Let S = {req(φ), res(ψ)} respectively represent a request and response
involving some information φ and ψ. Then

– Reply(req(φ)) = {res(ψ)}
– Reply(res(ψ)) = ∅

Definition 5. [Message] The set M of messages is defined as {〈id , pl , sa, ta〉 | id ∈
N, pl ∈ A, sa ∈ S, ta ∈ N} such that the four elements of a message m are
respectively denoted by:

– id(m): the identifier of the message
– player(m): the player sending the message
– speech-act(m): the speech-act in the message
– target(m): the target of the message (i.e. the id of the message it replies to)

Note how each message targets another in a dialogue. This is how protocols (defined
later) use the notion of reply.

Definition 6. [Dialogue] The set of dialogues, denoted D, is the set of all finite se-
quences m1, . . . ,mn from M such that each ith message in the sequence has identifier
i. Given a dialogue d, the set of players participating in d is denoted by Ad, and for
every message mi ∈ d, player(mi) ∈Ad.

A Practical Framework for General Dialogue-based Bilateral Interactions 5

A dialogue is thus a sequence of messages exchanged between a set of participating
players, as viewed by any player. A dialogue is bilateral if messages are exchanged
between exactly two players:

Definition 7. [Bilateral Dialogue] A dialogue d is bilateral iff Ad = {a, b} for some
players a, b ∈A where a 6= b.

Remark 1. The above definitions for dialogues specify the structure that each dialogue
participant maintains and not a construct globally shared between them. Due to the
asynchronous message exchange, the order of messages in dialogues on either side may
be different. This is discussed more in Section 4.1.

Notation 8 Let d = m1, . . . ,mi, . . . ,mn be some arbitrary dialogue. Then:

– d0 represents an empty dialogue.
– di represents m1, . . . ,mi.
– d,m represents the continuation of dialogue d with message m.
– dn′ is a sub-dialogue of dn iff n′ ≤ n and the first n′ messages in dn is the same as

those in dn′ .

An interaction must specify how a dialogue commences by describing the speech-
act(s) which can be used to start a dialogue:

Definition 9. [Commencement] A non-empty subset C ⊆ S of speech-acts S is defined
as initial. Any dialogue dn is commenced at 1 and speech-act(m1) ∈ C.

In some cases, it is useful for an interaction to define dialogue termination criteria
so the participating agents have prior agreement as to when their dialogue is terminated.
These criteria are defined in our framework via speech-acts.

Definition 10. [Termination] A subset T ⊆ S of speech-acts S is defined as terminal.
A dialogue dn is terminated at n, iff speech-act(mn) ∈ T and it is not the case that d
is terminated at an earlier point n′ < n.

Note that if T = ∅, an interaction does not impose dialogue termination, and it is up
to the participants to decide the criteria for recognising when a dialogue is terminated
(e.g. after a period of inactivity).

The role of a player in a dialogue is defined as follows:

Definition 11. [Role Assignment] The partial function R : A ×M 7−→ R describes
the role of any player a in a dialogue whose first message is m, i.e. where

– id(m) = 1
– player(m) ∈ {a, a′} where {a, a′} ∈Ad for some dialogue d
– speech-act(m) ∈ C

– target(m) = 0 (see R6 in Definition 15)

If m is not an initial message or a /∈Ad, then R(a,m) = undefined.

6 S. A. Hosseini et al.

Example 3. A simple request/response interaction in which roles are defined as R =
{inquirer, respondent}, speech-acts and reply structure as those in Example 2, and
where C = {req(φ)}, defines the assignment of roles to players as follows:

R(a,m) =

{
inquirer iff player(m) = a

respondent otherwise

A turn-taking function defines how turns shift in a dialogue:

Definition 12. [Turn-Taking] A turn-taking function is Turn : D −→ 2A where
Turn(d) ∈Ad, specifying the player(s) who have the right to send the next message in
a dialogue.

We now define the notion of well-formed dialogues:

Definition 13. [Well-Formed Dialogue] A subset of dialogues Dw ⊆ D are well-
formed with the condition that a) d0 is always in Dw, and b) iff dn ∈ Dw so are
all of dn’s sub-dialogues dn′ where n′ < n.

Any terminated well-formed dialogue has an outcome that determines the state in
which the dialogue is terminated:

Definition 14. [Outcome] A non-empty finite set O is defined where each o ∈ O is
a dialogue outcome. A partial function Outcome : Dw −→ O maps any terminated
dialogue d to an outcome and Outcome(d) = undefined if d is not terminated.

Protocols define the legality of a message with reference to a dialogue:

Definition 15. [Protocol] A protocol is a labelling function Legal : Dw ×M −→
{True, False} which satisfies protocol rules R1 − R6 below:

For any dn ∈ Dw and m ∈ dn, Legal(dn,m) = True iff:

– R1: player(m) ∈ Turn(dn)
– R2: speech-act(m) ∈ S.
– R3: id(m) = n+ 1
– R4: target(m) = 0 iff id(m) = 1, otherwise 1 ≤ target(m) < id(m).
– R5: if m replies to m′ ∈ dn, then speech-act(m) ∈ Reply(speech-act(m′)).
– R6: dn is not terminated at n.

Protocol rules R1 and R2 respectively ensure that messages are sent by the ‘right’
players in a dialogue, as specified by the turn-taking function, and that they have the
correct speech-acts (per Definition 3). Protocol rule R3 ensures that each message is
correctly placed right after the last message in the dialogue. R4 and R5 regulate replies
by stating that only the first message replies to no other message (target(m1) = 0),
and any other message targets another one in the dialogue while respecting the reply
structure of speech-acts (Definition 4). Finally, R6 states that once a dialogue is termi-
nated, no other message can be legally added.

Together, the above rules define a lower bound on message legality. Of course, ad-
ditional rules may be defined in specific interactions, for example, in the protocol that
will be described in the next section.

A Practical Framework for General Dialogue-based Bilateral Interactions 7

Definition 16. [Well-Formed Dialogues Against Protocols] A dialogue dn is well-
formed against a protocol Legal, iff Legal(dn−1,mn) = True.

Remark 2. Note that dialogues, well-formed under any protocol, are recursively well-
formed on their sub-dialogues due to Definition 13.

Proposition 1. Let I be an interaction dialogue system where s ∈ C and @s′ ∈ S such
that s ∈ Reply(s′). There is no well-formed dialogue d in I that contains a message
m where speech-act(m) = s.

An interaction dialogue system can now be defined:

Definition 17. [Interaction Dialogue System] An Interaction Dialogue System is a tu-
ple 〈R,S, Reply,C,T, R, Turn, Outcome, Legal〉 where R is a set of roles, S is a set
of speech-acts, Reply is a reply function, C is the initial speech-acts, T is the terminal
speech-acts, R is a role assignment function, Turn is a turn-taking function, Outcome
is an outcome function, and Legal is a protocol.

3.2 Framework Instantiated: Bilateral Negotiation

The framework presented above is abstract and needs to be instantiated to capture spe-
cific interactions.

A bilateral negotiation is an interaction between two agents that negotiate over a
set of resources. There are many examples of bilateral negotiation systems in the lit-
erature [3,43,4]. Here, we present a simple two-party negotiation as an instance of the
framework:

Definition 18. [Negotiation Dialogue System] An interaction dialogue system for bi-
lateral negotiation is an interaction dialogue system 〈Rn,Sn, Replyn,Cn,Tn, Rn, Turnn,
Outcomen, Legaln〉 where:

– (Negotiation Roles) Rn = {b, s} where b stands for buyer and s seller
– (Negotiation Speech-acts) Sn={cfp(e), propose(e, p), accept(), decline()} where
e is a non-empty set of resources and p ∈ R>0 denotes a price

– (Negotiation Reply)

Replyn(cfp(e)) = {propose(e, p), decline()}
Replyn(propose(e, p)) = {propose(e, p

′), accept()}
Replyn(accept()) = Reply(decline()) = ∅

– (Negotiation Commencement) Cn = {cfp(e)}
– (Negotiation Termination) Tn={accept(), decline()}
– (Negotiation Role Assignment) Let m be an initial message and x ∈A:

R(x,m) =

{
b iff player(m) = x

s otherwise

8 S. A. Hosseini et al.

– (Negotiation Turn-Taking) Let x, x′ ∈A s.t. x 6= x′:

Turnn(di) =

{
{x} iff i is even

{x′} otherwise

– (Negotiation Outcome) On = {a-r, a-u}where a-r stands for agreement-reached
and a-u for agreement-unreached:

Outcomen(di) =

{
a-r iff speech-act(mi) = accept()

a-u otherwise

– (Negotiation Protocol) Legaln : Dw ×M −→ {True, False} is a protocol, that
in addition to R1,R6, satisfies the negotiation rule N1 below: For any di ∈ Dw

and m ∈ di, Legaln(di,m) = True iff:
• N1: if speech-act(m) = propose(e, p) or speech-act(m) = accept(), and
m replies to m′ then player(m) 6= player(m′).

4 Implementation

In line with Req. 2 in the introduction, we developed a technical implementation of the
formalism we proposed in Section 3. In what follows, we describe its major components
and highlight important implementation issues.

4.1 Practical Considerations

Asynchronisation Recall from Section 2 that in this work, we do not assume commu-
nication between agents to be synchronous. The asynchronisation means that the two
dialogue structures (see Definition 6), held by each participant in a dialogue, may not
necessarily be identical. Consider an example interaction with the following turn taking
function:

Turn(d) = {a, b} for any d, where a, b ∈Ad

Let us assume a dialogue dn between a and b. At point n, agent a sends message m
while simultaneously b sends m′ (note the turn-taking function essentially allows any
participant to send a message at any point in the dialogue). After these moves, a’s
dialogue is d,m,m′ and b’s is d,m′,m.

This discrepancy entails that in addition to the explicit dialogue structures held by
each participant in a dialogue, there exists an implicit structure, to which no participant
has access, that could represent the global state of the dialogue. This structure, unlike
local dialogues, is not a sequence, rather a poset (i.e. partially ordered set) where only
some of the messages are ordered and some are incomparable.

Definition 19. [Global Dialogues] A global dialogue is a tuple 〈M,≺〉 whereM ⊂M

is a set of messages and ≺ is a partial order.

A Practical Framework for General Dialogue-based Bilateral Interactions 9

Note that mi ≺ mj means mi precedes mj in both participants’ dialogues, and
having mi ⊀ mj and mj ⊀ mi means mi and mj are incomparable and thus ordered
differently in the two dialogues.

In the implementation, this means that messages are not uniquely identified only by
their id (e.g. when identifying the message m′ that a message m replies to). Instead, id
and player combined are used to uniquely identify each message. This is achieved in
the implementation by splitting the set of non-zero integers into two mutually exclusive
subsets of positive Z+ and negative Z− numbers, assigning the former to the player
starting the dialogue (let us call it a) and the latter to the other player (let us call it
b). As a result, a continuously increments and b decrements the id of the messages
they send (replacing R3 in Definition 15). The second part of R4 then is replaced with
the condition that target(m) is between the smallest negative and largest positive id
excluding 0.

The incomparability of certain messages in an implicit global dialogue, and hence
the discrepancy of orders between local dialogues is not, in and of itself, a problem. In
some use cases, this incomparability does not matter, especially when taking into ac-
count that the reply mechanism, strictly enforced in protocols, can cover causal ordering
(e.g. a speech-act s which is strictly required to be after s′ can be defined as its reply).
It is however an issue that must be considered when designing specific interactions.

Moreover, there are interaction designs with specific reply structures and turn-taking
functions that guarantee messages in the global dialogue are totally ordered. These re-
sults are beyond the scope of this work and will be presented in future work on the
properties of interaction designs.

Parallel Dialogues In practice, agents may be engaged in multiple interactions and di-
alogues at the same time. Therefore, an agent x who is having two simultaneous nego-
tiations with an agent y, should be able to recognise the correct dialogues y’s messages
belong to. To address this, each dialogue in the implementation is assigned a reference
by its two players. Thus, in addition to the four elements in Definition 5, each message
includes a reference to the dialogue to which it belongs.

4.2 Protocol Specification

The decentralised nature of multi-agent systems means agents may be designed and
developed independently. Any implementation of interaction protocols must therefore
support agents with heterogeneous technical requirements (e.g. hardware, platform, or
programming language) and diverse implementations.

For this reason, we have created a format for describing interactions and protocols
according to the formalism in Section 3.1, while being independent of specific program-
ming languages in which agents may be implemented. The format is based on YAML
[10], itself a language for structured data that is both machine and human-readable (and
as such, easy to edit with any standard text editor).

An example protocol specification corresponding with the bilateral negotiation ex-
ample of Section 3.2, as well as technical description of specification’s format can be
found in Section A in the appendix.

10 S. A. Hosseini et al.

4.3 From Specification to Code

A protocol specification is only a high-level description of an interaction protocol and
is designed to be independent of agents’ implementations. For agents to engage in an
interaction however, they need to have access to the protocol’s definitions in the lan-
guage they use. For instance, an agent developed in Python who wants to negotiate
using the protocol in Section 3.2 with another agent developed in Go, each require an
interpretation of the same specification in their own language.

The framework thus includes a protocol generator, which for any agent, given a
protocol specification, produces the protocol package in the language this particular
agent uses. Currently, the generator only takes into account the programming language
that agents use. This architecture however allows for other agent constraints to be added
later for consideration by the generator (e.g. an agent with limited resources may receive
a more resource-bounded interpretation of a protocol’s data structures).

Any generated protocol package consists of a) the technical definitions of the un-
derlying concepts, e.g. a message, speech-acts and the reply structure, b) verification
checks on messages according to the protocol, and c) description of how messages may
be serialised and deserialised. Instructions on how to generate a protocol package from
a specification is given in Section C in the appendix.

4.4 Serialisation

The messages agents exchange in dialogues may contain arbitrary contents with local
representations (i.e. objects). However, in order to send these messages over a network,
their local representations must be serialised by the sender and deserialised by the re-
ceiver. The framework uses Protocol Buffers [29] as the serialisation mechanism for
cross-platform support.

Upon generating a protocol, the generator produces a protocol buffer schema, de-
scribing serialised models, as well as encoding and decoding logic corresponding with
the protocol’s specification. The protocol buffer schema generated for bilateral negoti-
ations specification can be found in Section B of the appendix.

4.5 Protocol Adherence Verification

A protocol package, generated to meet the needs of an agent, provides all the definitions
needed for this agent to know “what can be done in these interactions?”. The question,
“what to do in an interaction?”, naturally arising, must be addressed for agents to par-
take in and benefit from interactions.

The framework places a separation of concerns with a clear distinction between the
roles of a protocol designer and an agent developer. The former designs an interac-
tion protocol whose constructs are publicly accessible (e.g. what is a valid reply to any
speech-act). The latter designs the agent, most likely independent of the protocol de-
signer, and has access to constructs privately owned by its agent (e.g. the agent’s utility
function). The second question is addressed by agent developers, who create strategies
for their agents to engage in specific interactions.

A Practical Framework for General Dialogue-based Bilateral Interactions 11

The peer-to-peer nature of communication between agents, a direct consequence of
the environment’s decentralised nature, also means that in any interaction, the partici-
pating players’ adherence to the protocol is verified only by the players themselves. Any
message m is thus verified by its sender before being sent and by its receiver right after
it is received. The dialogue-based design of interaction protocols enables the resolution
of errors and failures of compliance via dialogues themselves [24].

5 Related Work

One of the most widely used notations for designing interaction protocols is Agent
UML (AUML) [26]. AUML is an extension of UML 2.0 [42] with additional agent-
specific features. AUML is a graphical notation and for relatively simple interactions
is intuitive. However, it is one of the most complex notations [36] with 17 distinct
graphical constructs compared with 11 for Statechart [22], and 5 or fewer for other
graphical notations [1,41,49].

AUML assumes message delivery is synchronous, therefore protocols suffer from
the enactability problem [18] which has to be addressed externally. The reliance on
UML also presents a major issue for AUML in that it is a semi-formal language. There
are no formal semantics for Interaction Diagrams and some of its elements make use
of unstructured text (e.g. guards). This means ambiguities and misunderstandings are
possible, which in turn makes the realisation of tools and implementations of AUML
Interaction Diagrams difficult. Therefore, AUML is not considered a precise language.

Statechart is another popular and highly influential notation for agent interaction
protocols [22]. Similar to AUML, Statechart is a graphical notation, but unlike AUML,
it supports variables and parallel protocols, allowing them to model information-driven
interactions. Also similar to AUML, interaction protocols in statecharts are designed
with the synchronicity assumption, which means Statechart protocols are prone to the
same enactability problem.

Compared to FSMs and Petri nets, Statechart’s notation is fairly complex, both
graphically (with 11 distinct graphical elements) and due to unstructured text in cer-
tain elements (e.g. guards and effects). Furthermore, there are more than twenty seman-
tics, of differing types proposed for Statecharts. This means the same statechart can be
interpreted completely differently under different semantics [17,45].

Statecharts were designed from the outset for reactive event-driven distributed sys-
tems, and not multi-agent systems. Therefore, they do not support the notion of roles,
and transitions represent events rather than messages. This means that message at-
tributes such as sender/receiver are not specified.

Hierarchical Agent Protocol Notation (HAPN) is a relatively more recent proposal
[49]. HAPN focuses on addressing the problems its authors found in prior proposals,
namely, a) flexible data-driven protocols, b) role representation and mapping to agents,
and c) hierarchical modularity.

HAPN is a graphical notation, with some structured textual elements, and uses Hi-
erarchical Finite State Machines [1] as its underlying conceptual model. It allows mod-
elling parallelism and exceptions, supports information-driven interactions by adding

12 S. A. Hosseini et al.

flexibility on order of messages, and has some support for protocols with multiple role
instances.

Similar to the other two notations above, HAPN assumes synchronous message
delivery and the authors acknowledge the problems with this assumption, but argue that
this is a standard and long-standing assumption in protocol design notations and suggest
external processes for addressing them, e.g. [18].

Other research strands less closely related to our proposal include, commitment-
based [51,8,48] and norm-based [5,16] interaction protocols, and BSPL [44]. They are
all promising proposals, though some have fundamentally different assumptions than
ours (e.g. norm-based methods are usually applied in organisational settings which are
not entirely decentralised). However, none of these proposals has yet matured into a
widespread practical methodology.

6 Conclusion

In this work, we propose a general framework for dialogue-based bilateral interactions
that use protocols to govern their participants’ behaviours. There are many proposals
in the literature that focus on one or some aspects of the above problem.What sets this
work apart is its end-to-end approach, from formalisation and specification of interac-
tions to implementation and deployment as part of agent solutions.

The multi-agent and strictly decentralised nature of the environments we focus on
(see Req. 1) requires that protocols are verifiable by interaction participants and support
asynchronous message delivery. The practicality requirement (see Req. 2) means the
framework has to be formal and precise to be computational, and easy to use to be
practical. Although it is straightforward to verify the former via practical use, the latter
is harder to measure.

Our end-to-end approach means that we focused on a minimal complete proposal.
It can be further improved and extended in various directions, some of which outlined
below:

– The replying nature of messages in dialogues lends itself nicely to a graph-theoretical
interpretation. This, in turn, would enable studying the properties of interactions
under graph-theoretical assumptions. It would also facilitate the creation of tools
for visualising and more easily analysing interactions, and further informs a natural
definition for protocol modularity (i.e. sub-protocols) via sub-graphs.

– Although the framework is fully formalised and practically accessible, the proper-
ties of its interaction instances are left unspecified. It would be useful to present
these properties and highlight the effects of different interaction designs, including
best practices, on the characteristics of the resulting interactions.

– Another line of work could focus on increasing the expressiveness of the protocol
specification language and the cross-platform support of the protocol generator,
covering more programming languages and platforms, and meeting other technical
requirements by agents, thus increasing support for more heterogeneous agents.

A Practical Framework for General Dialogue-based Bilateral Interactions 13

name: negotiation
author: EMAS_authors
version: 0.1.0
description: 'A protocol for bilateral negotiations.'
license: Apache-2.0
aea_version: '>=1.0.0, <2.0.0'
protocol_specification_id: EMAS_authors/negotiation:1.0.0
speech_acts:
cfp:
e: ct:Resources

propose:
e: ct:Resources
p: pt:float

accept: {}
decline: {}

...

ct:Resources: |
bytes resources_bytes = 1;

...

initiation: [cfp]
reply:
cfp: [propose, decline]
propose: [propose, accept, decline]
accept: []
decline: []

termination: [accept, decline]
roles: {b, s}
end_states: [agreement_reached, agreement_unreached]
keep_terminal_state_dialogues: true
...

Listing 1: Protocol Specification for Bilateral Negotiation

14 S. A. Hosseini et al.

A Protocol Specification

Listing 1 shows the protocol specification corresponding with bilateral negotiation
in Section 2.3. Protocol specifications are formatted in YAML.4 and consist of three
YAML documents (enclosed between −−− and ...):

– The first document contains basic information about the protocol as well as its
speech-acts. Speech-acts are each listed as key-values, where the key is the perfor-
mative and the value is a dictionary of its contents specifying their name and type.
For example, cfp has one content, named e whose type is ct : Resource. The
specification also comes with a language-independent type system. A summary of
the types are in Table 1.

– The second document contains protocol buffer schema snippet of any custom types
defined for speech-act contents.

– The third document contains the interaction protocols definitions where the fields
are self-explanatory and correspond with definitions in Section 3.1.

B Protocol Buffer Schema

An example of the protocol buffer schema that a generator produces from the specifica-
tion in Listing 1 is given in Listing 2.

C Instructions on Using the Framework

Note that detailed and up-to-date instructions can be found at https://github.com/fetchai/
agents-aea.

– Ensure you have Python 3.7 installed on your machine.
– Install the AEA framework using pip (python package installer):

> pip install aea[all]
– You many need to create a registry account (this is so you can publish your agent’s

packages on a registry):
> aea init

Then follow the on-screen instructions.
– Create an agent:

> aea create agent
– Enter the newly created agent directory:

> cd agent
– Generate the protocol:

> aea generate protocol <path>
where 〈path〉 is the path to the protocol specification file.

– The protocol package can now be found under . . . /agent/protocols/negotiation.

4 See https://yaml.org

https://github.com/fetchai/agents-aea
https://github.com/fetchai/agents-aea
https://yaml.org

A Practical Framework for General Dialogue-based Bilateral Interactions 15

C
ode

Type
Form

at
E

xam
ple

In
Python

〈C
T〉

C
ustom

types
c
t
:R
e
g
E
x
p
(∧

[A
−
Z
][a
−
z
A
−
Z
0
−
9
]∗

$
)

c
t
:D
a
t
a
M
o
d
e
l

C
ustom

C
lass

〈P
T〉

Prim
itive

types
p
t
:b
y
t
e
s

p
t
:b
y
t
e
s

b
y
t
e
s

p
t
:i
n
t

p
t
:i
n
t

i
n
t

p
t
:f
l
o
a
t

p
t
:f
l
o
a
t

f
l
o
a
t

p
t
:b
o
o
l

p
t
:b
o
o
l

b
o
o
l

p
t
:s
t
r

p
t
:s
t
r

s
t
r

〈P
C
T〉

Prim
itive

collection
types

p
t
:s
e
t
[〈P

T〉]
p
t
:s
e
t
[p
t
:s
t
r
]

F
r
o
z
e
n
S
e
t
[s
t
r
]

p
t
:l
i
s
t
[〈P

T〉]
p
t
:l
i
s
t
[p
t
:i
n
t
]

T
u
p
l
e
[i
n
t
,...]

〈P
M
T〉

Prim
itive

m
apping

types
p
t
:d
i
c
t
[〈P

T〉,〈P
T〉]

p
t
:d
i
c
t
[p
t
:s
t
r
,p
t
:b
o
o
l
]

D
i
c
t
[s
t
r
,b
o
o
l
]

〈M
T〉

M
ultitypes

p
t
:u
n
i
o
n
[〈P

T〉/〈C
T〉/〈P

C
T〉/〈P

M
T〉,...,

p
t
:u
n
i
o
n
[c
t
:M
o
d
e
l
,p
t
:s
e
t
[p
t
:s
t
r
]]

U
n
i
o
n
[M
o
d
e
l
,F
r
o
z
e
n
S
e
t
[s
t
r
]]

〈P
T〉/〈C

T〉/〈P
C
T〉/〈P

M
T〉]

〈O〉
O

ptional
p
t
:o
p
t
i
o
n
a
l
[〈M

T〉/〈P
T〉/〈C

T〉/〈P
C
T〉/〈P

M
T〉]

p
t
:o
p
t
i
o
n
a
l
[p
t
:b
o
o
l
]

O
p
t
i
o
n
a
l
[b
o
o
l
]

Table
1:Protocolspecification

contenttypes

16 S. A. Hosseini et al.

syntax = "proto3";

package aea.EMAS_authors.negotiation;

message NegotiationMessage{

// Custom Types
message Resources{

bytes resources_bytes = 1;
}

// Performatives and contents
message Cfp_Performative{

Resources e = 1;
}

message Propose_Performative{
Resources e = 1;
float p = 2;

}

message Accept_Performative{}

message Decline_Performative{}

oneof performative{
Accept_Performative accept = 5;
Cfp_Performative cfp = 6;
Decline_Performative decline = 7;
Propose_Performative propose = 8;

}
}

Listing 2: Protocol Specification for Bilateral Negotiation

References

1. Alur, R., Kannan, S., Yannakakis, M.: Communicating hierarchical state machines. In: Wie-
dermann, J., van Emde Boas, P., Nielsen, M. (eds.) Automata, Languages and Programming.
pp. 169–178. Springer Berlin Heidelberg, Berlin, Heidelberg (1999)

2. Amgoud, L., Dimopoulos, Y., Moraitis, P.: A unified and general framework for
argumentation-based negotiation. In: Proceedings of the 6th International Joint Conference
on Autonomous Agents and Multiagent Systems. pp. 158:1–158:8. AAMAS ’07, ACM, New
York, NY, USA (2007)

A Practical Framework for General Dialogue-based Bilateral Interactions 17

3. Amgoud, L., Parsons, S., Maudet, N.: Arguments, dialogue, and negotiation. In: ECAI 2000,
Proceedings of the 14th European Conference on Artificial Intelligence, Berlin, Germany,
August 20-25, 2000. pp. 338–342 (2000)

4. Amgoud, L., Vesic, S.: A formal analysis of the role of argumentation in negotiation dia-
logues. Journal of Logic and Computation 22(5), 957–978 (2012)

5. Andrighetto, G., Governatori, G., Noriega, P., van der Torre, L.: Normative Multi-Agent
Systems. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik (04 2013)

6. Arcos, J.L., Esteva, M., Noriega, P., Rodrı́guez-Aguilar, J.A., Sierra, C.: Engineering open
environments with electronic institutions. Engineering Applications of Artificial Intelligence
18(2), 191 – 204 (2005), agent-oriented Software Development

7. Austin, J., Austin, J., Urmson, J., Urmson, J., Sbisà, M.: How to Do Things with Words. A
Harvard paperback, Harvard University Press (1975)

8. Baldoni, M., Baroglio, C., Marengo, E., Patti, V.: Constitutive and regulative specifications
of commitment protocols: A decoupled approach. ACM Trans. Intell. Syst. Technol. 4(2)
(Apr 2013)

9. Bellifemine, F.L., Caire, G., Greenwood, D.: Developing Multi-Agent Systems with JADE
(Wiley Series in Agent Technology). John Wiley & Sons, Inc., Hoboken, NJ, USA (2007)

10. Ben-Kiki, O., Evans, C., Ingerson, B.: Yaml ain’t markup language (YAML™) version 1.2.
Tech. rep., YAML (2009)

11. Black, E., Hunter, A.: An inquiry dialogue system. Autonomous Agents and Multi-Agent
Systems 19(2), 173–209 (2009)

12. Boissier, O., Bordini, R.H., Hübner, J.F., Ricci, A., Santi, A.: Multi-agent oriented program-
ming with jacamo. Science of Computer Programming 78(6), 747 – 761 (2013)

13. Castagna, G., Dezani-Ciancaglini, M., Padovani, L.: On global types and multi-party ses-
sions. In: Bruni, R., Dingel, J. (eds.) Formal Techniques for Distributed Systems. pp. 1–28.
Springer Berlin Heidelberg, Berlin, Heidelberg (2011)

14. Chopra, A., V, S., Singh, M.: An evaluation of communication protocol languages for engi-
neering multiagent systems. Journal of Artificial Intelligence Research 69, 351–1393 (Dec
2020). https://doi.org/10.1613/jair.1.12212

15. Collier, R.W., Russell, S., Lillis, D.: Exploring aop from an oop perspective. In: Proceedings
of the 5th International Workshop on Programming Based on Actors, Agents, and Decentral-
ized Control. p. 25–36. AGERE! 2015, Association for Computing Machinery, New York,
NY, USA (2015)

16. Dastani, M., van der Torre, L., Yorke-Smith, N.: Commitments and interaction norms in
organisations. Autonomous Agents and Multi-Agent Systems 31, 207–249 (2015)

17. Eshuis, R.: Reconciling statechart semantics. Science of Computer Programming 74(3), 65
– 99 (2009)

18. Ferrando, A., Winikoff, M., Cranefield, S., Dignum, F., Mascardi, V.: On enactability of
agent interaction protocols: Towards a unified approach. In: Dennis, L.A., Bordini, R.H.,
Lespérance, Y. (eds.) Engineering Multi-Agent Systems. pp. 43–64. Springer International
Publishing, Cham (2020)

19. Freire, J., Botelho, L.: Executing explicitly represented protocols. In: In Workshop on chal-
lenges in open systems at AAMAS’02 (2002)

20. Gregori, M., Palanca, J., Aranda, G.: A jabber-based multi-agent system platform. In: Pro-
ceedings of the International Conference on Autonomous Agents. vol. 2006, pp. 1282–1284
(2006)

21. Hanachi, C., Sibertin-Blanc, C.: Protocol moderators as active middle-agents in multi-agent
systems. Autonomous Agents and Multi-Agent Systems 8, 131–164 (2004)

22. Harel, D.: Statecharts: a visual formalism for complex systems. Science of Computer Pro-
gramming 8(3), 231 – 274 (1987)

https://doi.org/10.1613/jair.1.12212

18 S. A. Hosseini et al.

23. Herlihy, M., Rajsbaum, S., Tuttle, M.R.: Unifying synchronous and asynchronous message-
passing models. In: Proceedings of the Seventeenth Annual ACM Symposium on Principles
of Distributed Computing. p. 133–142. PODC ’98, Association for Computing Machinery,
New York, NY, USA (1998)

24. Hosseini, S.A.: Dialogues Incorporating Enthymemes and Modelling of Other Agents’ Be-
liefs. Ph.D. thesis, King’s College London (September 2017)

25. Huget, M.P., Odell, J.: Representing agent interaction protocols with agent uml. In: Odell, J.,
Giorgini, P., Müller, J.P. (eds.) Agent-Oriented Software Engineering V. pp. 16–30. Springer
Berlin Heidelberg, Berlin, Heidelberg (2005)

26. Huget, M.P., Odell, J., Bauer, B.: The AUML Approach, pp. 237–257. Springer US, Boston,
MA (2004)

27. Hulstijn, J.: Dialogue Models For Inquiry and Transaction. Ph.D. thesis, Universiteit Twente,
Proefschrift Universiteit Twente, The Netherlands (2000)

28. Kakas, A., Maudet, N., Pavlos, M.: Modular representation of agent interaction rules
through argumentation. Autonomous Agents and Multi-Agent Systems 11 (09 2005).
https://doi.org/10.1007/s10458-005-2176-4

29. Kaur, G., Fuad, M.M.: An evaluation of protocol buffer. In: Proceedings of the IEEE South-
eastCon 2010 (SoutheastCon). pp. 459–462 (2010)

30. Leppänen, T., Lacasia, J.A., Tobe, Y., Sezaki, K., Riekki, J.: Mobile crowdsensing with mo-
bile agents. Autonomous Agents and Multi-Agent Systems 31, 1–35 (2015)

31. McCorry, P., Buckland, C., Bakshi, S., Wüst, K., Miller, A.: You sank my battleship! a case
study to evaluate state channels as a scaling solution for cryptocurrencies. In: Bracciali, A.,
Clark, J., Pintore, F., Rønne, P.B., Sala, M. (eds.) Financial Cryptography and Data Security.
pp. 35–49. Springer International Publishing, Cham (2020)

32. Minarsch, D., Hosseini, S.A., Favorito, M., Ward, J.: Autonomous economic agents as a sec-
ond layer technology for blockchains: Framework introduction and use-case demonstration.
In: 2020 Crypto Valley Conference on Blockchain Technology (CVCBT). pp. 27–35 (2020)

33. Minarsch, D., Favorito, M., Hosseini, A., Ward, J.: Trading agent competition with au-
tonomous economic agents. In: Proceedings of the 19th International Conference on Au-
tonomous Agents and MultiAgent Systems. p. 2107–2110. AAMAS ’20, International Foun-
dation for Autonomous Agents and Multiagent Systems, Richland, SC (2020)

34. Minarsch, D., Favorito, M., Hosseini, S.A., Turchenkov, Y., Ward, J.: Autonomous economic
agent framework. In: Engineering Multi-Agent Systems. (to publish) (2021)

35. Minarsch., D., Hosseini., S.A., Favorito., M., Ward., J.: Trading agent competition with au-
tonomous economic agents. In: Proceedings of the 13th International Conference on Agents
and Artificial Intelligence - Volume 1: SDMIS,. pp. 574–582. INSTICC, SciTePress (2021).
https://doi.org/10.5220/0010431805740582

36. Moody, D., van Hillegersberg, J.: Evaluating the visual syntax of uml: An analysis of the
cognitive effectiveness of the uml family of diagrams. In: Gašević, D., Lämmel, R., Van Wyk,
E. (eds.) Software Language Engineering. pp. 16–34. Springer Berlin Heidelberg, Berlin,
Heidelberg (2009)

37. Parsons, S., Wooldridge, M., Amgoud, L.: Properties and complexity of some formal inter-
agent dialogues. Journal of Logic and Computation 13(3), 347–376 (2003)

38. Prakken, H.: Coherence and flexibility in dialogue games for argumentation. Journal of Logic
and Computation 15(6), 1009–1040 (2005)

39. Prakken, H.: Formal systems for persuasion dialogue. The Knowledge Engineering Review
21, 163–188 (5 2006)

40. Rahmani, L., Minarsch, D., Ward, J.: Peer-to-peer autonomous agent communication net-
work. In: Proceedings of the 20th International Conference on Autonomous Agents and
MultiAgent Systems. p. [to appear]. AAMAS ’21, International Foundation for Autonomous
Agents and Multiagent Systems (2021)

https://doi.org/10.1007/s10458-005-2176-4
https://doi.org/10.5220/0010431805740582

A Practical Framework for General Dialogue-based Bilateral Interactions 19

41. Reisig, W.: Petri Nets: An Introduction. Springer-Verlag, Berlin, Heidelberg (1985)
42. Rumbaugh, J., Jacobson, I., Booch, G.: Unified Modeling Language Reference Manual, The

(2nd Edition). Pearson Higher Education (2004)
43. Sadri, F., Toni, F., Torroni, P.: Logic agents, dialogues and negotiation: an abductive ap-

proach. In: In Proceedings of AISB’01 Convention. pp. 71–78. The Society for the Study of
Artificial Intelligence and the Simulation of Behaviour (2001)

44. Singh, M.P.: Information-driven interaction-oriented programming: Bspl, the blindingly sim-
ple protocol language. In: The 10th International Conference on Autonomous Agents and
Multiagent Systems - Volume 2. p. 491–498. AAMAS ’11, International Foundation for Au-
tonomous Agents and Multiagent Systems, Richland, SC (2011)

45. Taleghani, A., Atlee, J.M.: Semantic variations among uml statemachines. In: Nierstrasz, O.,
Whittle, J., Harel, D., Reggio, G. (eds.) Model Driven Engineering Languages and Systems.
pp. 245–259. Springer Berlin Heidelberg, Berlin, Heidelberg (2006)

46. Walton, D.N., Krabbe, E.C.: Commitment in Dialogue: Basic Concepts of Interpersonal Rea-
soning. State University of New York, State University of New York Press (1995)

47. Wattenhofer, R.: Distributed Ledger Technology: The Science of the Blockchain. CreateS-
pace Independent Publishing Platform, North Charleston, SC, USA, 2nd edn. (2017)

48. Winikoff, M., Liu, W., Harland, J.: Enhancing commitment machines. In: Leite, J., Omicini,
A., Torroni, P., Yolum, p. (eds.) Declarative Agent Languages and Technologies II. pp. 198–
220. Springer Berlin Heidelberg, Berlin, Heidelberg (2005)

49. Winikoff, M., Yadav, N., Padgham, L.: A new hierarchical agent protocol notation. Au-
tonomous Agents and Multi-Agent Systems 32, 59—-133 (07 2018)

50. Wooldridge, M.: An Introduction to MultiAgent Systems. Wiley, 2 edn. (June 2009)
51. Yolum, P., Singh, M.P.: Commitment machines. In: Meyer, J.J.C., Tambe, M. (eds.) Intelli-

gent Agents VIII. pp. 235–247. Springer Berlin Heidelberg, Berlin, Heidelberg (2002)
52. Yoshida, N., Hu, R., Neykova, R., Ng, N.: The scribble protocol language. In: Abadi, M.,

Lluch Lafuente, A. (eds.) Trustworthy Global Computing. pp. 22–41. Springer International
Publishing, Cham (2014)

	A Practical Framework for General Dialogue-based Bilateral Interactions

