
A PoW-less Bitcoin with Certified Byzantine Consensus
An Unorthodox Foundation for a Central Bank Digital Currency (CBDC)?

Marco Benedetti, Francesco De Sclavis, Marco Favorito, Giuseppe Galano,
Sara Giammusso, Antonio Muci, Matteo Nardelli∗

Technical Report CFC.CRYPTO.CS/2022/1
Applied Research Team (ART) - IT Department - Bank of Italy†

ABSTRACT
Distributed Ledger Technologies (DLTs), when managed by a few
trusted validators, require most but not all of the machinery avail-
able in public DLTs. In this work, we explore one possible way to
profit from this state of affairs. We devise a combination of a modi-
fied Practical Byzantine Fault Tolerant (PBFT) protocol and a revised
Flexible Round-Optimized Schnorr Threshold Signatures (FROST)
scheme, and then we inject the resulting proof-of-authority con-
sensus algorithm into Bitcoin (chosen for the reliability, openness,
and liveliness it brings in), replacing its PoW machinery. The com-
bined protocol may operate as a modern, safe foundation for digital
payment systems and Central Bank Digital Currencies (CBDC).

1 INTRODUCTION
In the past few years, the announcement of cryptoasset-inspired
“stablecoins” by private companies (e.g., Diem by Meta1) and the
prospective issuance by central banks of fiat currencies in digi-
tal format for retail use, or Central Bank Digital Currencies (CB-
DCs) [9, 21, 24, 60], coupled with the unabated diffusion of decen-
tralised blockchain-based digital assets, have reignited the interest
in alternative consensus protocols for blockchains, especially those
amenable to permissioned settings, on which we focus here.

The trusted nodes in such arrangements may be interpreted as
multiple computational nodes managed by the same actor. In this
case, we would envision a service provider that centrally operates a
modern, blockchain-based, programmable and transactional engine,
exhibiting high-availability and strong fault tolerance.

That is a compelling motivation already, but there are far more
interesting use cases, truer to the nature of a distributed ledger: Each
node (or small group of nodes) may be managed by independent
actors, far removed from each other, either geographically or legally.
These actors may share a common interest that would be perfectly
served, technically, by a distributed ledger with no centralization
point: Everyone enjoys equal rights, duties, capabilities; no one
“owns the system”; everyone contributes to its resilience. These
actors may even reside in different jurisdictions, and conform to
different laws, albeit under some shared regulatory framework 2.

These motivations hold for most DLTs, from Hyperledger3 to
Corda4, and for both payment and non-payment domains.
∗Email address of the authors are in the form [firstname].[lastname]@bancaditalia.it,
except for giuseppe.galano2@bancaditalia.it.
†The views expressed in this paper are those of the authors and do not necessarily
reflect those of the Bank of Italy.
1https://www.diem.com/en-us/
2One hypothetical case would be a CBDC whose high availability and fault/attack
tolerance rest upon a distributed platform operated cooperatively—in a profound sense—
by several Central Banks in a given monetary area.
3https://www.hyperledger.org/
4https://www.corda.net/

However, in this work, we specifically focus on Bitcoin and on
digital payments. We ask ourselves: Is the unorthodox notion of “Pre-
cisely Bitcoin, minus its traditional consensus algorithm, plus trusted
third parties, in a permissioned setting” a technically consistent one?

Let’s start by reviewing Bitcoin and its consensus protocol.

1.1 Consensus in Bitcoin
Bitcoin [52] is a peer-to-peer monetary network launched in 2009: It
implements a digital asset which does not rely on trusted third par-
ties to guarantee its scarcity or to prevent double spending. Instead
of trusted parties, it employs a decentralized consensus protocol
among anonymous participants, based on Proof-of-Work (PoW). In
PoW, votes (on what the next state of the system is) can be cast by
just anyone, but each vote implies a substantial consumption of real-
world resources (e.g., time, hardware, energy) to solve certain hard
problems related to the inversion of cryptographically strong hash
functions, whose solution is required to make the vote valid. This
“costly postage stamp” of sort is key to prevent sybil attacks in open,
anonymous settings: Without it, malicious actors could compro-
mise the consensus by surreptitiously creating at no (or little) cost
a number of pseudonymous identities, through which a majority
of apparently distinct votes, hence the system, are controlled5.

Many other similar crypto-assets have emerged over time, such
as Ethereum [18] and Monero [4], to name a few. Each of them
brings in additional features (e.g., Ethereum adds a Turing-complete
programming language), but for the most part they resolved to con-
front their large, decentralised, anonymous user base by inheriting
the PoW idea made popular—and proven effective—by Bitcoin.

There is ample space for debate on whether the power-hungry
PoW is inherently the best conceivable solution for large, decentral-
ized, anonymous blockchains; perhaps the very same properties
can be obtained by computationally lighter6 means? For sure, in a
permissioned setting with few validators, PoW alone is not going
to work: The resources sufficient to outcompete a small network
are likely within reach for any motivated and sponsored attacker.

So, the question becomes: How to disentangle Bitcoin from PoW,
and by what means is the resulting blockchain supposed to keep
exhibiting tolerance to faults, attacks, and censorship attempts?

5To subjugate a PoW system, an attacker would have to outcompete the rest of the
network in terms of available resources and willingness to sacrifice them. This so
called 51% attack has been widely studied in the literature [48, 62, 80].
6Power-efficient alternatives for reaching a consensus in large peer-to-peer networks
of anonymous participants have been explored. For example, in a Proof-of-Stake
(PoS) system [43] such as Algorand [39], the voting rights are not proportional to the
consumption of real-world resources but to the staking of virtual resources themselves.

ar
X

iv
:2

20
7.

06
87

0v
1

 [
cs

.D
C

]
 1

4
Ju

l 2
02

2

https://www.diem.com/en-us/
https://www.hyperledger.org/
https://www.corda.net/

1.2 All of Bitcoin but PoW
Our goal is to inherit verbatim all the algorithms, data structures,
cryptography, and software from Bitcoin, getting rid of merely the
ingredients (e.g., PoW) that are unnecessary or undesirable in a
permissioned setting managed by a few trusted actors.

If it is possible to identify a small set of actors that end-users
trust to cooperatively guarantee scarcity and to prevent any double
spending, then a Bitcoin-like blockchain can be grown via, e.g., a
consensus based on Proof-of-Authority (PoA), wherein validators
are known in advance and trusted by all network stakeholders.
They are “just” required to prove their identity by cryptographically
strong means before appending any new blocks to the chain.

Of course, high availability and tolerance to faults and to mali-
cious behaviors of some nodes (things that used to be guaranteed by
decentralization and PoW) remain mandatory even in our smaller,
permissioned, distributed setting. It turns out these properties can
be recovered by borrowing and modifying existing consensus and
signature algorithms from the literature. The difficult thing is to
inject such new algorithmic ingredients into Bitcoin while striving
to maximize the reuse of its existing technical apparatus.

That’s in essence the idea we develop in this paper. As usual,
the devil is in the details, and it takes a lot of work to devise a
“permissioned Bitcoin” exhibiting all the features we call for.

The untold premise here is that there are enough virtues and
strengths to be inherited from the Bitcoin codebase, even after PoW
is excised, to be worth the trouble. Is this true?

1.3 Public strengths, in private
Bitcoin is the one platform to combine the following 5 features.

(1) Focus. The original focal point of Bitcoin—digital payments—
aligns with our prospective use cases more than other DLTs
focused on, e.g., programmability, tokenisation, decentralized
finance (DeFi).

(2) Reliability. Bitcoin has been extensively studied by the Acad-
emy and has been open to attacks on the Internet for over 13
years; it has had arguably more scrutiny than any other DLT.
So, we reuse a wealth of battle-tested software machinery in
a permissioned setting—a good starting point for, e.g, mission
critical payment applications.

(3) Extensibility. The scripting language of Bitcoin is a good
trade-off between programmability and safety. It has seen the
largest ever deployment of any decentralized programmable
machine, while keeping a small surface of attack compared
to Turing-complete DLTs. Fortunately, its programmability is
strong enough to implement most (all?) second layer construc-
tions that are relevant in, e.g., the payment domain.

(4) Openness. Most software/protocols in Bitcoin are open. There
is a rich ecosystem of competences, software, and services
around its blockchain, from open source communities and
organizations—both large and small. This implies a level-playing
field open to, e.g., small Fintechs, which is important in potential
pro-competitive public shared platforms.

(5) Liveliness. The communities developing Bitcoin are large, lively,
and diverse; a profusion of new features/updates are always
in the work. And, while the network effect sustaining the Bit-
coin stack is one of the largest in existence as far as DLTs are

concerned, there is no private organisation in key roles: A nice
attribute for applications such as CBDCs.
The most part of all these features are PoW-independent. There

is much to reuse in a permissioned, payment-oriented blockchain.

1.4 Solution overview
We target settingswhere there are some (from 5 to 20) privileged and
trusted nodes in charge of accepting and validating all transactions
and growing an otherwise Bitcoin-like blockchain.

From the literature on distributed consensus algorithms, we se-
lect one Byzantine fault tolerant (BFT) scheme that suits our needs:
the PBFT (Practical Byzantine Fault Tolerant) protocol. We analyzed
the existing open implementations of this protocol, but none was fit
for the purpose of being injected straight into Bitcoin; so we reim-
plemented the protocol in a high-level logical framework meant to
mimic the original declarative specification [23] as close as possible,
and we modified its features slightly to support the distributed
update of an append-only, blockchain-aware state machine.

The acquisition of block signatures from a valid quorum of
trusted nodes is performed by a custom variant of FROST [45]
(Flexible Round-Optimized Schnorr Threshold Signatures). This is pos-
sible thanks to the recent introduction, within Bitcoin, of Schnorr
signatures [64], via the Taproot soft-fork [78]

Unfortunately, a simple juxtaposition of PBFT and FROST is not
enough: Issues arise during distributed signature, because the con-
sequences of the possible reluctance of (faulty or malicious) nodes
to sign blocks is something PBFT is unaware of and FROST alone
is unable to deal with. In addition, both protocols have parameters
on which the properties of the emerging system depend. These
parameters have to be chosen to play nicely with each other. We
work out a solution to this intermixing problem in the next sections.

1.5 Scope of this work
We focus only on the foundational issue of the consensus and
signing protocol at the “on-ledger” layer, i.e., on designing and
developing a working PoA-based BFT algorithm meant to sustain
the growth of an extremely Bitcoin-like blockchain.

True to the nature of Bitcoin, we want our solution be as open
and as subject to scrutiny and reuse as possible: A prototype imple-
mentation of the entire system is available in open source7.

But, there is a lot more to any real-world Bitcoin-derived per-
missioned payment system than is dealt with in this paper. Two
of the most pressing issues of the retail payment systems we are
interested in supporting with our construction are scalability (to the
order of tens of thousands of transactions per second) and privacy
(of the payment metadata with respect to third parties and payment
processors). Both properties are out of scope for the present work.
They are meant to be achieved by programming the core distributed
machine we devise into guaranteeing them. The so called second
layer protocols we will leverage to obtain this result are ongoing
research and are discussed as future work (cfr. Section 7).

1.6 Structure and contribution of this paper
Our major contribution is to show how 3 fairly sophisticated proto-
cols, coming from different communities—namely Bitcoin, PBFT,

7Link to the OS repository will be available here soon.

2

and FROST—can be altered to make them interlock neatly with
one another. From such pooling, a permissioned Bitcoin-like DLT
emerges, with strong fault tolerance and confidential aggregation
of signatures. A detailed specification and an open-source imple-
mentation are contributed.

To the best of our knowledge, this is the first time algorithms
such as PBFT and FROST are combined and adapted to a PoA setting
that retains the wealth of technical tools accrued by Bitcoin.

A high-level overview of the architecture and interlinks of the
system is provided in Section 2, together with a discussion of the
desired requirements for such a PoA-based mining federation.

Then, one section is devoted to each of the three protocols, with
the aim of describing the adaptations and enhancements they go
through in order to smoothly engage with each other:
• Section 3 reviews and characterizes the changes we apply to
Bitcoin, and show how much (or how little) our flavor of the
protocol differs from the public one;
• Section 4 describes the features and implementation of a BFT
consensus algorithm modified for use by a mining network
in cooperation with a suited signature algorithm; we move
from a reference protocol (PBFT) and modify it to fit our
architecture and requirements;
• Section 5 presents 5-FBFT and 3-FBFT, two novel FROST-
derived protocols to aggregate a quorum of block signatures
into a single one (with advantages in terms of confidentiality
and space efficiency) during PBFT consensus rounds.

Finally, we review the related literature in the areas of permissioned
DLTs, custom BFT designs, and threshold signature schemes, com-
paring our work with the state of the art (Section 6) and we list a
few extensions and future developments that would allow our new
architecture to be used in real-world scenarios (Section 7).

2 SYSTEM MODEL AND REQUIREMENTS
In this section, we describe at a high-level the system architecture
and the desired properties it is expected to fulfill.

2.1 High-level architecture
Our architecture is composed of two networks with different prop-
erties: a participant network and a mining network—see Figure 1.

Participant network. The participant network is composed of a
set of participant nodes, noted 𝑃0, 𝑃1, . . . , 𝑃𝑀−1, which run the modi-
fied Bitcoin protocol from Section 3. Each participant node receives,
validates, and stores a copy of our Bitcoin-like blockchain. Partic-
ipants form a spontaneous, permission-less peer-to-peer network,
without a predefined topology or size. The bidirectional communi-
cation channels among them (dotted lines in Figure 1) are used to
propagate blocks and messages via gossiping, just like in Bitcoin.

Mining Node. The rounded rectangles inside the grey area are
our mining8 nodes, or “miners” (there are four of them in Figure 1).
Each miner 𝑀𝑖 = (𝐵𝑖 ,𝐶𝑖) is composed of a bridging node 𝐵𝑖 and
a consensus node 𝐶𝑖 , running on the same host and connected by
synchronous bridging channels (see next). Each miner is controlled

8The terms “miner” and “mining” are etymologically incongruous in the context of
our architecture, where trusted nodes do not operate to mining any reward; however,
we stick to them for historic reasons and for their close association with Bitcoin.

Figure 1: A permission-less participant network and a per-
missioned mining network with 𝑁 = 4 nodes.

and operated by one member of a federation of 𝑁 trusted, iden-
tifiable actors, called validators. While the bridging node of each
miner runs the same protocol as any other participant node (in
particular, it collects transactions to be validated from participants
and propagates new valid blocks to others as soon as it gets aware
of them), the consensus node runs the modified version of PBFT
and FROST described in Section 4 and Section 5, respectively.

Mining network. Miners are connected to each other in a full
mesh topology; the resulting permissioned network is called the
mining network (everything within the gray area in Figure 1). This
is a peer-to-peer network too: Mining nodes are equivalent to each
other, with no one playing any special role. The communication
links among mining nodes (dashed lines) are bidirectional channels
used to exchange authenticated9 messages required by the PoA
consensus and signing protocols (as per Section 4 and Section 5).

Bridging channels. In between the bridging node and the con-
sensus node of each miner, there are 2 host-local, synchronous
channels (solid, oriented arcs in Figure 1): They act as bridging
channels between the Bitcoin realm and the PBFT/FROST one. One
uses an RPC protocol, whereby the consensus node takes the initia-
tive to interact with the corresponding bridging component to, e.g.,
obtain a candidate template block, sign a block, ask to broadcast
a block (see Section 4.4 and all the self-loop messages in Figure 2).
The other bridging channel adopts a publish/subscribe model over
the ZMQ protocol: The consensus node subscribes to the bridging
node in order to get the mining federation notified of occurrences
of new signed blocks, which act as PBFT checkpoints (Section 4.5).
These protocols and modes of interaction were chosen because
the corresponding endpoints are already exposed by the standard
Bitcoin core APIs offered by 𝐵𝑖 , i.e., for maximum Bitcoin reuse.

Roles and coupling. The mining network is a service provider:
Its goal is to collect transactions from participants, reach a robust

9Each mining node has a private key that is used to sign messages; the corresponding
public key are used by other mining nodes to verify the origin and authenticity of
each consensus message they receive.

3

consensus on which to include in new valid blocks, and then deliver
signed blocks back to participants, thus growing their shared and
trusted blockchain. Thank to the properties of the consensus and
signing protocols, the mining network appears to the participants
as a single mining entity. Dually, the network of participants acts
as a unique, virtual client submitting transactions to the blockchain
managed by the mining nodes, and expecting such transactions to
be timely validated with cryptographic strength. The client (net-
work of participants) is reliably connected to the server (network
of miners) via a few standard Bitcoin-like (𝑃 𝑗 , 𝐵𝑘) channels freely
established by at least some participant 𝑃 𝑗 towards one or more of
the bridging nodes 𝐵𝑘 ; these channels are indistinguishable from
regular peer-to-peer channels within the permissionless network.

Failures. We assume a Byzantine failure model where 𝐹𝐵 min-
ing nodes can fail10 arbitrarily. In addition to Byzantine failures,
we assume that further 𝐹𝐶 nodes may crash. The consensus algo-
rithm we employ rely on synchrony to provide liveness, but not
to provide safety. In order to avoid the FLP impossibility result on
consensus [30], we assume that (dashed) communication channels
are weakly synchronous: Message delays among correct miners
do not grow too fast and indefinitely. This is considered a pretty
faithful model of a real production system network, where faults
are eventually repaired. As long as the network is in a failed state, it
may fail to deliver messages, delay/duplicate them, or deliver them
out of order. We assume an adversary that can coordinate faulty
nodes, but cannot subvert the cryptographic primitives in use.

2.2 Requirements
We call for our PoA consensus to exhibit the following properties.
R1 Correctness. All blocks need to have a content that is valid

according to the rules of the blockchain application, e.g., valid
hash of the previous block, valid signatures, non-negative bal-
ances. Each block must transition the blockchain from one valid
state to another, and the mining network must prevent invalid
blocks to be produced. This property is also called validity in the
context of blockchain networks, and consistency in the context
of database systems (ACID properties).

R2 Safety. In the particular case of a blockchain, safety forbids
chain forks, i.e., different but valid versions of the most recent
blocks of the same blockchain. We use the Common Prefix
property definition from [33, 34], instantiated with parameter
𝑘 ∈ N, which states that for any pair of honest nodes 𝑃𝑖 , 𝑃 𝑗 ,
adopting the chains 𝐶𝑖 ,𝐶 𝑗 at heights ℎ𝑖 ≤ ℎ 𝑗 , it holds that the
chain resulting from the pruning of the 𝑘 rightmost blocks of
𝐶𝑖 is a prefix of 𝐶 𝑗 . In our model, safety is not probabilistic11
and this requires the Common Prefix Property to hold ∀𝑘 ≥ 0,
which is equivalent to the absence of forks. This property is

10A mining node fails if and only if the mining component fails, or the participant
component fail, or any bridging link fails.
11In Bitcoin and other “Nakamoto consensus protocols”, transaction finality is a proba-
bilistic concept: The mere appearance of a transaction in a new block does not offer
solid guarantee that it will not be (possibly maliciously) reverted. There is still the
possibility that an attacker builds an alternative blockchain that "reorganizes" the latest
(i.e., the longest) accepted version of the ledger to subvert or revert any transaction.
However, once a transaction is included in a block, the probability that an attacker
with finite resources succeeds in building such an alternate reality drops exponentially
with the number of blocks appended to the chain.

also called agreement in the context of distributed systems, and
finality in the context of payment systems12 (e.g., Libra [12]).

R3 Liveness. The mining network must produce new blocks at
each round. We use the Chain Growth property definition from
[33, 34], with parameters 𝜏 ∈ R and 𝑟 ∈ N: for any honest party
P that has a chain C, it holds that after any 𝑟 consecutive rounds
it adopts a chain that is at least 𝜏 · 𝑟 blocks longer than C.

R4 Calmness. The pace at which blocks are produced is upper-
bounded. A stable block time helps participants to form expec-
tations on their computational requirements (e.g., disk space,
bandwidth). If a Byzantine miner creates blocks at a rate sig-
nificantly higher than 𝜏 , it can cause participants to run out of
resources, effectively carrying out a denial-of-service attack.

R5 Confidentiality. This property requires that, at each round
carried on with no faulty/Byzantine miners, the mining network
does not reveal information to the participants, other than the
new block and its solution13. In other words, the participants
should not learn anything other than the fact that a provably
valid new blockwas added. Other information, such as theminer
who forged the block, the active miners/signers who approved it,
the total number of miners/signers in the federation, should be
kept hidden from the participants. This property makes targeted
attacks against the mining network harder.

R2-R3 have been already defined and studied in the context of
blockchains [34], whereas R4-R5 are somewhat peculiar to ours.

2.3 Optional requirements
There are at least two other secondary requirements that could be
taken in account, but that are out of scope for this work. One is
the scalability of the BFT solution in terms of number of messages
exchanged among the mining nodes at each round, as a function
of the number of mining nodes14. In this paper, and considering
our target use cases and the typical size of the mining network,
this notion of scalability is not of paramount importance. Another
property is that of fairness, i.e., preventing a Byzantine miner from
delaying/censoring certain transactions from the network (can only
happen under specific conditions). The measures to include to elim-
inate this specific kind of unfairness are known, but they unnec-
essarily complicate the baseline construction we are interested in
presenting here, and are left as future work (cfr. Section 7).

3 AMENDING THE BITCOIN PROTOCOL
This section describes the main changes to the Bitcoin protocol.

Block validity. Our blocks are valid only if they include the solu-
tion to a specific “block challenge”, as in the Bitcoin Signet [3]. It
could be expressed either as a Bitcoin script via OP_CHECKMULTISIG
(as in a Bitcoin Signet), or as an aggregated public key (see Section 5).
The challenge is distributed among participant nodes at setup time,

12The deterministic finality of transactions we have regained is a feature of no little
bearing on the legal status of the digital assets that may be transacted on the platform.
13This property is impossible to guarantee in rounds where Byzantine failures happen
in our architecture, since the network configuration is known to each participant, and
a Byzantine node can choose to reveal extra information to the outside world.
14In the literature, two properties related to scalability have been considered: linearity
and responsiveness (e.g., see [81]). Linearity (a condition considered optimal in the
context of BFT) guarantees that creating new blocks incurs only a linear communication
cost, even when leaders rotate. Responsiveness means that the leader has no built-in
delay steps and advances as soon as it collects responses from validators.

4

and set in the configuration file of each node they run. For each
block, the data that satisfy the challenge, called "block solution", is
stored in a special OP_RETURN output of the coinbase transaction,
so it is automatically propagated to the peer-to-peer network via
the standard mechanisms used for blocks and transactions.

As we shall see (Section 5), in our case the solution represents
an “aggregated signature”, i.e., a set of signatures from a valid but
opaque quorum of trusted signers in the mining network who
agreed (Section 4) to append that specific block at a specific height.

To accommodate for our safety requirement (R2) in the context
of a PBFT-derived consensus15 (see Section 4), it is necessary to
alter the Signet validation rule to exclude the block solution from
the computation of the Merkle root for transactions16.

In addition, it is necessary to include the PoW fields nBits and
nNonce in the block signature. This is because we want to prevent a
(malicious) miner with SHA-256 hashing power to be able to cause
a fork by tweaking them: If the PoW fields were not signed, then
a miner could change nNonce to imply more work, and its block
would replace the legitimate one by the Bitcoin rules17.

Block mining. The steps for creating blocks become as follows:
(1) Upon request by the consensus node of a miner, the corre-

sponding bridging node assembles a block template, i.e., it
selects a set of transactions from the mempool, and adds a
coinbase transaction with an empty block solution. At the
end of this step, the block Merkle root is finalized.

(2) The miner grinds the block, i.e., it finds a nonce that fulfills
a trivial PoW-like challenge, which is purposely included for
backward compatibility with the original Bitcoin protocol.
At the end of this step, the block hash is finalized.

(3) A quorum of miners signs the block, i.e., it appends a valid
block solution. At the end of this step, the transactions are
finalized: the Merkle root and block hashes are unaffected.

Block interval. The interval between (1 MB) blocks is fixed to
one minute, instead of the self-stabilizing18 10-minute interval of
the public Bitcoin network. We could increase the rate or the block
size to improve the throughput, but this would limit the valuable
ability of all network participants to stay in sync, especially those
with low bandwidth. At any rate, raw transactional scalability for
end-users is meant to be achieved off-chain (see Section 8).

Block subsidy. Differently from the public Bitcoin, we allow any
value for the block subsidy, i.e., for the freshly minted coin that is

15In presence of delays or failures, it is impossible to know in advance the specific
quorum of validators that will agree to sign a block at a specific height, as it would
imply foreseeing if and how failures will occur.
16Otherwise, different sets of signers for the same block (see Note 15) could lead to
different, valid block solutions. This would result in different coinbase transactions
and block hashes, which in turn would lead to chain forks, eventually triggering a
chain reorganization. By our safety requirement (R2), this possibility is to be ruled out.
17An alternative solution to this problem would be similar to the one used with the
block signatures, i.e., to exclude the PoWfields from the block hash altogether. However,
this approach would call for a much more invasive modification to the existing Bitcoin
code base, and this is contrary to our goal of maximizing its reuse.
18The Bitcoin network employs a closed-loop feedback to stabilize the 10-minute
interval in the presence of a fluctuating and generally unknown global hashing power:
A decreasing (increasing) average mining time is taken as a proxy of an increased
(decreased) global hash capacity, hence the mining difficulty is proportionally increased
(decreased) to get back to 10 minutes. This entire difficulty adjustment mechanism is
not relevant in a permissioned PoA network, so it is disabled.

output by any coinbase transaction. This is done by removing the
block subsidy checks from the code base of participant nodes19.

Coinbase maturity. In Bitcoin, coinbase transaction outputs can
only be spent after a certain number of new blocks (100 in the public
network). This number is called coinbase maturity. Its existence is a
countermeasure to rule out certain inconsistencies and disservices
to end users in case of blockchain reorganizations20. In our settings,
no forks occur as per our safety requirement, and no reorganization
can happen, so the coinbase maturity is safely set to 0.

A suggestive (if insubstantial) appraisal of how much of the
public Bitcoin code we retain is obtained by measuring the syntactic
scope of our changes; they amount to (a) the replacement of ≈ 20
lines of code and (b) the addition of ≈ 500 lines. This patch is
sufficient to glue the latest Bitcoin core21 to the implementation of
the protocols described in the rest of this paper, and to tie up all
loose ends. Such custom protocols add another ≈ 8𝑘 lines of code,
i.e., less than 2% of the current Bitcoin core size.

4 ORDERING BLOCKS WITH PBFT
Our liveness (R3) and calmness (R4) requirements call for the min-
ing network to produce a block per minute (cfr. Section 2). We
assume that our technological infrastructure is up to the task in
terms of computing power and network bandwidth/latency, and
we design our block creation process around a Practical Byzantine
Fault Tolerant (PBFT) protocol [22]. The preference for PBFT, in
lieu of other BFT algorithms, is motivated by the following consid-
eration: PBFT sacrifices linear communication (i.e., the number of
messages exchanged is not linear in the cluster size) in return for
a simpler implementation; however, our cluster is small enough,
by design, to make the superlinear communication complexity a
minor drawback, whereas simplicity in the implementation helps a
lot the cohabitation with the complex Bitcoin protocol.

4.1 PBFT in a nutshell
PBFT is a state machine replication algorithm: it relies on a set
of replicas to maintain a service state and to implement a set of
operations onto it. The replicas move through a succession of con-
figurations called views, which are numbered consecutively. In a
view, one replica is the primary and the others are backups. View
changes are carried out when it appears that the primary has failed.

19It is worth recalling that the block subsidy plays a very specific role in the public
Bitcoin, i.e., to provide incentive to miners, who pay for the resources they invest in
mining (and then accrue some revenue) by the market value hopefully recognized to
the very subsidy tokens theymine. Especially in early times (when transaction fees play
almost no role as there are few users transacting) this was an essential bootstrapping
mechanism, subject to a well known ballistic halving procedure, still underway, meant
to smoothly transition the system from a “self-referential bet” into a full-fledged and
largely used service with a fee-based sustainability model. All these motivation, cost-
recovering, and bootstrapping phenomena are non-existent in our permissioned setting:
They are replaced by external incentives, agreements, and monetary flows specific
to the supported use case and to the specific mining federation. The block subsidy
maintain one last, key role though: It is the one technical mechanism through which
the asset issuer(s) in the mining federation inject freshly minted tokens/money into
the blockchain, subject to, once again, external policies and arrangements.
20Without a large maturity value, the coinbase transactions of orphan blocks would
become invalid in case of a reorganization, together with any subsequent transactions
that depend on their outputs, causing severe inconveniences to end users.
21To fully profit from features (4) and (5) in Section 1.3, our open source patch and
code are always kept up to date with the latest release of the public code. At the time
of writing, we are “permissioning” the Bitcoin core version v23.0.

5

Service operations are invoked by clients, which send requests to the
primary. Then a three-phases protocols begins, that allows replicas
to agree among them on the order in which requests are to be exe-
cuted: (i) in the pre-prepare phase, the primary assigns a sequence
number to the request and multicasts it request to the backups; (ii)
in the prepare phase, the backups agree on the sequence number
proposed by the primary; (iii) in the commit phase, the replica con-
firm that an agreement on the request and its sequence number
has been reached by a PBFT quorum of replicas. Then, each replica
executes the operation and replies to the client. The client waits for
𝐹𝐵 + 1 replies from different replicas with the same result, where
𝐹𝐵 is the maximum number of replicas that may be Byzantine.

In the following sections we describe a specialized version of
PBFT that deals with block selection and block signing in presence
of Byzantine and crash failures. The algorithm contains additional
blockchain-specific steps, but also some simplifications, based upon
the following considerations: (i) Our state machine exposes only
a single operation, that is the appending of a new block; (ii) Our
mining network has a single abstract client that is the network of
participants; (iii) There are no parallel mining requests, since each
miner expects to mine only the next block (the one after the next
block cannot be mined if the next block is not mined yet); (iv) The
checkpoint and state propagation mechanisms can rely on the block
propagation process already present in the participants network.

4.2 Quorum size
Suppose we want to tolerate, at most, 𝐹𝐵 Byzantine failures, and
𝐹𝐶 crash failures in the mining network. We replicate the service
across 𝑁 = 3𝐹𝐵 + 2𝐹𝐶 + 1 nodes, and we choose a PBFT quorum of
𝑄 = 2𝐹𝐵 + 𝐹𝐶 + 1. For example, suppose the blockchain operators
want to keep mining blocks after the private key of one node is
compromised (Byzantine failure) and at the same time there is
ongoing maintenance on another node (crash failure). It is 𝐹𝐵 = 1
and 𝐹𝐶 = 1, so we need 𝑁 = 6 nodes and a PBFT quorum of
𝑄 = 4. This network configuration employs the minimum 𝑁 and 𝑄
guaranteeing that (i) two different quorums always intersect in at
least one non-Byzantine mining node, i.e., 𝑄 = ⌈(𝑁 + 𝐹𝐵 + 1)/2⌉,
which is a necessary condition for Safety (P2) and (ii) a quorum
of non-faulty miners can be reached also if 𝐹𝐵 + 𝐹𝐶 nodes fail, i.e.,
𝑁 −𝑄 = 𝐹𝐵 + 𝐹𝐶 , which is a necessary condition for Liveness (R3)—
provided delays among correct nodes do not grow indefinitely.

In addition to the PBFT quorum, we need to consider the Signet
quorum, i.e., the number of signatures which are required for a
block to be valid before the network of participants. Assuming that
each node controls a single Signet key, then a safe Signet quorum
also depends on 𝐹𝐵 . The minimum Signet quorum is 𝐹𝐵 + 1, which
corresponds to the number of agreeing replies a PBFT client needs
to collect from replicas. This quorum can be used if nodes sign the
block after they have received a PBFT quorum of commit messages.

In this paper, we assume a more restrictive condition: We require
the Signet quorum to be equal to the PBFT quorum, and we refer
generically to them as quorum. This allows us to design a PBFT
algorithm that does not require additional rounds for block signa-
ture (see Section 4.4), because the signing operation can be safely
anticipated to the commit phase. Also, we can use the participant
network gossiping for checkpoint propagation (see Section 4.5).

4.3 The client
In our setting, the PBFT client is just a single virtual entity: the
participant network. This implies a set of changes (simplifications,
for the most part) to the duties and operations of our PBFT client.

The original PBFT relies on a client to send request messages to
the primary (and, if needed, to other replicas), in order to invoke
operations on the replicated state machine. Once the operation
is executed, replicas send back the result directly to the client.
Clients are assumed to be trusted, since the PBFT safety property
is insufficient to protect against faulty clients. The original PBFT
requestmessage is ⟨REQUEST, 𝑜, 𝑡, 𝑐⟩𝜎𝑐 , where𝑜 is the statemachine
operation, 𝑡 is a request timestamp, and 𝑐 is a client identifier.

In our protocol, we instantiate the client and its requests as
follows. The state machine has a single operation, that appends a
new block. The content of the block (e.g., the set of transactions)
represents a form of non-determinism and its value will be selected
by the primary in the pre-prepare phase. For these reasons, we omit
the operation in the request message, since it is always an implicit
“append”, and the client identifier, since it is unique.

The participants network expects a new valid block to be mined
every 𝜏 seconds on average. Being 𝑇0 an initial timestamp that
is known in advance by all the replicas, we calculate the request
message timestamps by adding 𝑇0 to multiples of the desired block
time. In lights of these considerations, all replicas know in advance
all valid request messages, that have the form ⟨REQUEST,𝑇0 + 𝑛𝜏⟩:
𝑛 ∈ N+, where𝑛 is the block height for all blocks (except the genesis
one, which is fixed and not mined via the consensus algorithm).

Non-faulty replicas will generate a request for block 𝑛 when it
is expected to be mined, i.e., when their local clock value is at the
nominal timestamp of the blockminus a delta (that allows replicas to
carry out the PBFT round, and depends on communication delays).

The original PBFT reply message is ⟨REPLY, 𝑣, 𝑡, 𝑐, 𝑖, 𝑟 , ⟩𝜎𝑐 , where
𝑣 is the current view number, 𝑡 is the timestamp of the correspond-
ing request, 𝑖 is the replica identifier, and 𝑟 is the result of the
operation. In our protocol, a block mined at a given height is the
result of the append operation of the corresponding request. Given
that valid blocks are broadcast to the participants network once
a quorum of signatures by replicas is achieved, we omit the reply
messages from our specialized protocol, and replace it with the
Bitcoin block propagation mechanism to the participants network.

4.4 Normal operation (no faulty primary)
We describe the PBFT normal case operations of the mining net-
work, with a special focus on the modifications that allow miners
to create, sign and propagate a new valid block. Figure 2 shows the
normal case operations with a non-primary faulty replica.

The process starts with a request to append a new block, self-
generated by the primary. The operation is non-deterministic, as
its result depends on the content of the block to append. As sug-
gested in [22], we make sure that the primary selects such content
independently, and concatenates it with the associated request.

In the pre-prepare phase, the primary𝑀0 gathers a set of trans-
actions from its mempool and forms a template for the next block
to be appended. The primary assigns a sequence number 𝑛 to the
block, that corresponds to the height at which the block is expected

6

request pre-prepare prepare commit reply

get block
templaterequest

pre
prepare

test block
validity

combine and
broadcast blocksign block

prepare commit

M0

M1

M2

M3

(primary)

Figure 2: Mining network normal operation with 𝑁 = 4
nodes,𝑀0 as primary, and𝑀3 as faulty backup.

to be added, then includes the block in the pre-prepare message
and broadcasts it to backups for signature22.

A backup (i.e., 𝑀1, 𝑀2, or 𝑀3 in figure) accepts a pre-prepare
message if the request timestamp is valid, not too far in the future
with respect to the local clock of the replica, and the block template
is also valid. The block template validity is checked by the partici-
pant node which is co-located with the replica, and prevents invalid
blocks from being signed. If the request or the block is invalid, the
replica ignores the pre-prepare message. This may happen if, e.g.,
the primary or the replica are not synchronized to the blockchain
network or to Coordinated Universal Time. In addition to the above
checks, a replica checks the original PBFT conditions, to prevent
different blocks from being signed at the same height. If a backup
accepts the pre-prepare message, then it enters the prepare phase
and broadcasts the prepare message to all other replicas.

A replica (primary or backup) accepts a prepare message if all the
standard conditions [22] are true; no additional checks are present
at this stage. A block is said to be prepared at replica 𝑖 in view 𝑣

and height 𝑛 iff replica 𝑖 has received a pre-prepare proposal to
append block in view 𝑣 at height 𝑛 from the primary, and 𝑄 − 1
backups have acknowledged the proposal. The pre-prepare and
prepare phases of the algorithm guarantee that non-faulty replicas
agree on the block height within a view. When replicas reach an
agreement on a block and its height, they proceed to the commit
phase, in which they actually sign the prepared block.

In the commit phase, a replica (primary or backup) signs a block,
includes the signature in the commit message, and broadcasts the
message to other replicas. The addition of the signature to the
commit message is a difference with respect to the original PBFT.
A replica accepts a commit message if it contains a valid signature
for its corresponding block, and the PBFT conditions are met.

A block is locally committed at replica 𝑖 in view 𝑣 at height 𝑛 iff
replica 𝑖 has accepted a PBFT quorum of commit messages, possibly
including its own. The quorum of commit messages contains a valid
Signet quorum of block signatures, and is sufficient to assemble
a valid block solution, which can be accepted by the participants
network. In other words, when a quorum of commit messages is
collected, a replica can concatenate the signatures from the commit
messages, and append the combined signatures to the block solution,
in the coinbase transaction; if the replica is also synchronized with
the blockchain, it can subsequently broadcast the new block to the
22A faulty primary might send the same, invalid block to all replicas. Therefore, replicas
must be able to assess—independently and deterministically—whether the value is
correct (and what to do if it is not) based on their current value of the state.

participant network. It is possible that different replicas broadcast
the same block (in terms of transactions), at the same height, but
with different sets of signatures, because they received commit
messages from different replicas. This does not matter for the safety
guarantee of the blockchain, and does not cause a blockchain fork
or a reorganization, because block signatures, even if placed in the
coinbase transaction, are excluded from the calculation of the root
of the transactions Merkle tree, as described in Section 3.

The PBFT invariants guarantee that if a new block is locally com-
mitted at a non-faulty replica, then it is propagated to the network
and will eventually be received by all non-faulty participants.

4.5 Checkpoints
The PBFT checkpoint is a mechanism used to discard messages from
the log. It is used to guarantee the correctness of the service state
that is synchronised among replicas, even when messages have
been already discarded from the log. The original PBFT checkpoint
message is ⟨CHECKPOINT, 𝑛, 𝑣𝑎𝑙𝑖 , 𝑙𝑎𝑠𝑡𝑟𝑒𝑝𝑖 , 𝑙𝑎𝑠𝑡𝑟𝑒𝑝𝑡𝑖 , 𝑖⟩𝜎𝑖 , where 𝑛
is the sequence number, 𝑣𝑎𝑙𝑖 is the state machine value, 𝑙𝑎𝑠𝑡𝑟𝑒𝑝𝑖 and
𝑙𝑎𝑠𝑡𝑟𝑒𝑝𝑡𝑖 are the content of the reply message and the timestamp of
respective request, 𝑖 is a client identifier, and the message is signed
by the replica. A checkpoint is said to be stable when its content has
been signed by a quorum of different replicas, and the signatures
are the proof of correctness of the checkpoint.

In our protocol, we rely on the Bitcoin block propagation mech-
anism of the underlying participants network for the checkpoint
propagation among replicas. The checkpoint value 𝑛 is the block
height, while the 𝑣𝑎𝑙𝑖 is the whole blockchain content, that we sum-
marize as its tip (or best block hash), and the reply message is the
blockchain block at height𝑛. Each block appended to the blockchain
is by design signed by a quorum of replicas, and the block solution
represents the proof of correctness for the checkpoint. This implies
that all checkpoints are stable by design, i.e., they come with a proof
that they are the result of the execution of requests by a quorum
of replicas. For this reason, there is no equivalent for an unstable
checkpoint in our algorithm: Each replica maintains a single copy
of the service state, i.e., the one resulting from the last stable check-
point, or the last block. Moreover, the propagation of checkpoints
happens via the participants peer-to-peer Bitcoin network. Each
replica, upon receiving a new signed block at height 𝑛 from the
participants, including the ones propagated by the replica itself,
does the following: (i) discards all pre-prepare, prepare, and commit
messages with sequence number less than or equal to 𝑛; and (ii)
updates the PBFT parameters (namely, low and high watermarks)
to signal the replica is ready to append a new block at height 𝑛 + 1.

4.6 View change
The view-change protocol provides Liveness (R3) by allowing the
mining network to make progress when the primary fails. In our
protocol, as in PBFT, view changes are triggered by timeouts that
prevent backups from waiting indefinitely for new blocks. Our view
change is not different from the PBFT one, with the exception that
request messages are self-generated by replicas.

Each replica self-generates requests for each block, just before
these blocks are expected. A backup starts a timer when it self-
generates a request and the timer is not already running. A backup
is waiting for a request if it self-generated a request and has not

7

executed it. It stops the timer when it is no longer waiting to execute
the request, but restarts it if at that point it is waiting to execute
some other request. If the timer of backup 𝑖 expires in view 𝑣 , the
backup starts a view change to move the system to view 𝑣 + 1.

The same considerations on view-change timeout values that
are necessary to achieve Liveness in the original PBFT apply.

4.7 Realized properties of the mining network
Correctness is guaranteed, because a non-faulty replica does not
propose (if primary) or accept (if backup) a block that is invalid
according to the rules of the participant network.

Safety and Liveness hold under the same assumption as PBFT [22].
Calmness is guaranteed because a correct replica does not send (if
primary) or accept (if backup) a pre-prepare message with requests
containing an invalid (or too distant in the future) timestamp. Con-
fidentiality is not achieved, because the network configuration is
known to the participants network, and the actual signatures are
concatenated and published in the coinbase transaction of each
block. Section 5 describes an algorithm that also achieves confiden-
tiality (under the assumption that no Byzantine failures occur).

5 CERTIFIED BYZANTINE CONSENSUS
We address the problem of signing blocks in an aggregated man-
ner. Moving from a threshold signature scheme known as FROST
(Section 5.1), we design a novel protocol that combines aggregate
signatures with a BFT consensus protocol (Section 5.2).

5.1 The FROST Signature Scheme
We consider a threshold signature scheme with a group of 𝑛 par-
ticipants and a predefined threshold value 𝑘 , with 𝑘 < 𝑛 [65]. We
rely on the additive property of Schnorr signatures to quickly com-
bine signatures into an aggregated one [64]. The FROST signature
scheme requires three main protocols: (i) a key generation protocol
that creates secret shares for participants as well as public keys
for signature verification; (ii) a commitment protocol that creates
nonce/commitment share pairs for all participants; these commit-
ments allow to prevent known forgery and replay attacks; (iii) a
signature protocol coordinates the generation of the aggregated
signature by signers.

We define these protocols following the FROST specification [45].
Hereafter, each participant𝑀𝑖 has a unique identifier𝑚𝑖 ∈ {1, . . . , 𝑛}.
Let G be a group of prime order 𝑞, 𝑔 be a generator of G, and let 𝐻1
and 𝐻2 be cryptographic hash functions mapping to Z∗𝑞 . We denote
by 𝑥 ← 𝑆 that 𝑥 is uniformly randomly selected from set 𝑆 .

Key Generation. Before signing any block, participants need to
define secret and public keys. They share the same ciphersuite,
which specifies the underlying prime-order group details (e.g.,
ristretto255, P-256) and cryptographic hash function (e.g., SHA-
512). Each participant runs the FROST KeyGen protocol [45], an en-
hancement of the Pedersen Distributed Key Generation (DKG) [57],
which performs 𝑛 parallel executions of the Feldman’s VSS [29].
Hence, no centralized trusted dealer is needed.

The FROST KeyGen consists of two rounds where every partici-
pant exchanges messages with every other participant. We assume
that messages use a secure channel and will be eventually delivered.
At the end of the protocol, each participant𝑀𝑖 , with 𝑖 ∈ {1, . . . , 𝑛},

owns a secret share 𝑠𝑖 , a public verification share 𝑌𝑖 = 𝑔𝑠𝑖 , and the
group’s public key 𝑌 . The public verification share 𝑌𝑖 allows others
to verify the participant signature shares. The group’s public key
enables the aggregate threshold signature verification. It depends
on the set of participants 𝑛 and the configured threshold 𝑘 . Note
that, independently from the set of signers, if at least 𝑘 correct
signature shares are provided, a valid aggregate signature will be
produced, which can be verified using the group’s public key.

Commitment. In the commitment protocol, participants generate
(secret) nonces for signatures and exchange their public commit-
ments. The latter allow to verify the correct use of nonces. Although
nonces will be used in the signing process, they can be computed
upfront because they do not depend on the specific message to
sign. Importantly, a nonce must not be used multiple times, other-
wise the secret share is compromised. Following the FROST pre-
process protocol, each participant 𝑀𝑖 , 𝑖 ∈ {1, . . . , 𝑛}, generates 𝜋
nonce/commitment share pairs. Specifically, 𝑀𝑖 first generates the
nonce share pair (𝑑𝑖 𝑗 , 𝑒𝑖 𝑗) ← Z∗𝑞 × Z∗𝑞 , for 𝑗 ∈ {1, . . . , 𝜋}, and then
derives the commitment shares (𝐷𝑖 𝑗 , 𝐸𝑖 𝑗) = (𝑔𝑑𝑖 𝑗 , 𝑔𝑒𝑖 𝑗). 𝑀𝑖 saves
his nonces ⟨(𝑑𝑖 𝑗 , 𝑒𝑖 𝑗)⟩𝜋𝑗=1 for later use, and publishes his list of com-
mitments ⟨(𝑖, 𝐷𝑖 𝑗 , 𝐸𝑖 𝑗)⟩𝜋𝑗=1. When participants generate a single
nonce/commitment share pair at a time, i.e., 𝜋 = 1, we simplify the
notation and refer to the public commitments of𝑀𝑖 as (𝐷𝑖 , 𝐸𝑖).

Aggregated Signature. The aggregate signature protocol works
in two rounds. First, each participant generates his signature share.
Then, all participants’ shares are combined to obtain the final sig-
nature. Let 𝑆 be the set of participants to the signing process;
the cardinality of 𝑆 is 𝛼 , with 𝑘 ≤ 𝛼 ≤ 𝑛. Let 𝐿 be the list of 𝛼
participants’ commitments, i.e., 𝐿 = ⟨(𝑙, 𝐷𝑙 , 𝐸𝑙)⟩𝛼𝑙=1. When 𝑀𝑖 re-
ceives the message to sign 𝑚, he can use his secret share 𝑠𝑖 and
𝐿 to compute his signature share 𝑧𝑖 , which can then be sent to
all other participants. Formally, 𝑀𝑖 computes the set of binding
values 𝜌𝑙 = 𝐻1 (𝑙,𝑚, 𝐿), 𝑙 ∈ {1, . . . , 𝛼}, and derives the group com-
mitment 𝑅 =

∏𝛼
𝑙=1 𝐷𝑙 · (𝐸𝑙)𝜌𝑙 and the challenge 𝑐 = 𝐻2 (𝑅,𝑌,𝑚).

Then, 𝑀𝑖 computes his signature share 𝑧𝑖 on 𝑚 by computing
𝑧𝑖 = 𝑑𝑖 + (𝑒𝑖 · 𝜌𝑖) + 𝜆𝑖 · 𝑠𝑖 · 𝑐 , using (𝑑𝑖 , 𝑒𝑖) corresponding to
(𝐷𝑖 , 𝐸𝑖) ∈ 𝐿, and 𝑆 to determine the 𝑖-th Lagrange coefficient
𝜆𝑖 =

∏𝛼
𝑗=1, 𝑗≠𝑖

𝑚 𝑗

𝑚 𝑗−𝑚𝑖
.23 Since nonces cannot be usedmultiple times,

𝑀𝑖 deletes the ((𝑑𝑖 , 𝐷𝑖), (𝑒𝑖 , 𝐸𝑖)) pair from his local storage. To con-
clude the first round,𝑀𝑖 sends his signature share 𝑧𝑖 to every other
participant𝑀𝑙 , with 𝑙 ∈ 𝑆 .

The second round starts when 𝑀𝑖 receives all other signature
shares 𝑧𝑙 ; he will verify and aggregate the signatures. For verifi-
cation, for each 𝑙 ∈ 𝑆 , 𝑀𝑖 derives 𝜌𝑙 , 𝑅𝑙 , and 𝑐 (as defined before).
Then, he checks if the equality𝑔𝑧𝑙 = 𝑅𝑙 ·𝑌

𝑐 ·𝜆𝑙
𝑙

holds for each signing
share 𝑧𝑙 . If the verification is successful,𝑀𝑖 aggregates the signature
shares locally by computing 𝑧 =

∑
𝑖∈𝑆 𝑧𝑖 . Each participant saves

the aggregate signature 𝜎 = (𝑅, 𝑧) along with𝑚.

23In the KeyGen protocol,𝑀𝑖 defines a 𝑡−1 degree polynomial 𝑓𝑖 (𝑥) , with𝑘 randomly
sampled coefficients (𝑎𝑖0, . . . , 𝑎𝑖 (𝑡−1)) ← Z𝑞 . The group’s secret will result to be
𝑎0 =

∑𝑛
𝑖=1 𝑎𝑖0 .𝑀𝑖 securely sends to each other participant𝑀𝑙 the point (𝑚𝑙 , 𝑓𝑖 (𝑚𝑙)) .

Each participant then calculates his private signing share 𝑠𝑖 =
∑𝑛

𝑙=1 𝑓𝑙 (𝑚𝑖) , public
verification share 𝑌𝑖 = 𝑔𝑠𝑖 , and group’s public key 𝑌 =

∏𝑛
𝑗=1 𝑔

𝑎𝑗0 . The Lagrange
interpolation that reconstructs the secret 𝑎0 =

∑
𝑗 𝑎 𝑗0 takes place in the exponent

(under the Decisional Diffie-Hellman assumption, it is not feasible to extract 𝑎0).

8

M0

M1

M2

M3

pre-prepare prepare

s1, Y1

s2, Y2

s3, Y3

Y

s0, Y0

commit

block z

z0*

z2*

z1*

(primary)

Figure 3: Normal operation (no faulty primary) of 3-FBFT.
Replicas exchange a set of potential signature shares in
the commit phase. When a replica receives these signature
shares combines them to reconstruct the aggregate signa-
ture for the block in a decentralized manner.

5.2 FROSTing PBFT
The challenge of combining FROST with PBFT arises from the pres-
ence of Byzantine nodes that may refuse to sign blocks and from
the weakly synchronous communication model. A naïve integra-
tion of FROST would not work in practice due to the difficulty of
defining upfront the quorum of participants 𝑆 that will collaborate
to compute the aggregated signature 𝑧. Integrating FROST with
BFT requires to review the commitment and aggregate signature
protocols (Section 5.1). We need rules for exchanging (𝐷𝑖 , 𝐸𝑖) pairs
and the set of signers 𝑆 , two critical information for determining
the binding values 𝜌𝑖 , the challenge 𝑐 , and Lagrange coefficients 𝜆𝑖
that reconstruct the secret used to sign messages.

Two protocols are presented, called 3-FBFT and 5-FBFT. The first
represents the trivial way to use FROST in an asynchronous setting,
and optimizes the communication by shipping potential signature
shares with the PBFT commit messages. Unfortunately, this solution
requires an exponential number of potential commitments and
signature shares and can be used only when the set of signers
is small. The second introduces new rounds at the end of PBFT
consensus, which allow to minimize the information exchanged to
produce a valid block signature. To guarantee the protocol liveness
in presence of Byzantine nodes that may refuse to sign, this protocol
uses the idea proposed by ROAST [61]. Both protocols enhance
nodes with the cryptographic primitives presented in Section 5.1.
Either way, at the end of the protocol, each participant has a block
𝑚 with the related signature 𝜎 = (𝑅, 𝑧). The integrity of𝑚 can be
validated using the traditional Schnorr verification algorithm [64].

5.2.1 3-FBFT (3-Phase Frosted-BFT). This protocol aims to opti-
mize the number of rounds by allowing replicas to directly exchange
multiple, potential signature shares. The replicas themselves will
figure out autonomously how to combine the signature shares to
compute the correct aggregated signature for the block. Unlike
5-FBFT, this protocol decouples the commitment protocol from the
PBFT consensus. Each replica generates nonces and exchanges
informationwith other replicas to let them derive the public commit-
ments needed to sign blocks in 3-FBFT. This commitment protocol
uses a hierarchical deterministic key derivation [31, 77], which al-
lows determining (𝐷𝑖 , 𝐸𝑖) for each participant 𝑖 starting from an

extended public commitment of 𝑖 and locally available informa-
tion. From here on, we assume each participant knows its own
nonces and the public commitments of all replicas. The number of
commitments to generate considers that, for each block request, a
participant will exchange 𝛾 signature shares with all other partici-
pants. The 𝛾 parameter is defined observing that determining the
set of block signers 𝑆 in advance is not possible, due to the presence
of Byzantine replicas. However, computing an aggregated signature
requires only 𝑘 signature shares, with the threshold equal to the
Signet quorum size. In this case, the Signet quorum size equals the
PBFT quorum size 𝑄 , because signature aggregation takes place in
the commit phase that, in turn, waits for𝑄 messages as indicated in
Section 4.2. Each participant𝑀𝑖 determines all 𝑘-combinations of 𝑛
known participants S = ⟨𝑆 (𝑗) ⟩𝛾

𝑗=1, where 𝛾 =
(𝑛
𝑘

)
is the number of

combinations. Since the number of signature shares 𝛾 grows almost
as 𝑂 (2𝑛), this protocol is feasible only when 𝑛 is small, e.g., in a
small mining network. The nonces and public commitments are
indexed by the participant identifier, the PBFT sequence number
(i.e., block height), and the identifier of a specific combination of
signers (i.e., 𝑗 ∈ {1, . . . , 𝛾}). In this way, a participant will use a
different nonce for each generated signature share. Moreover, each
participant can readily retrieve the correct nonce/commitment pairs
for each combination of signers in a non-interactive manner.

In 3-FBFT, the signature aggregation protocol is executed at
once with the PBFT consensus protocol. The 3-FBFT protocol has
indeed the same number of phases as the traditional PBFT. Commit
messages are extended to transfer also signature shares. As usual,
we assume that each replica of the consensus protocol participates
in the signing process. Figure 3 shows 3-FBFT, highlighting the
modified messages in red. The pre-prepare and prepare phases of
3-FBFT exactly match the phases from Section 4. When the commit
phase starts,𝑀𝑖 determines the list of public commitments for every
combination of 𝑘 participants in S that include 𝑀𝑖 . 𝑀𝑖 computes
a signature share 𝑧 (𝑗)

𝑖
for each of these combinations, obtaining

Z𝑖 = ⟨𝑧 (𝑗)
𝑖
⟩𝛾
𝑗=1, which is then sent to all other replicas via the

commit message. When the quorum in the commit phase is reached,
each replica has all the information to aggregate signature shares
of others and create a valid block certificate. Each participant uses
the received commit messages to identify a set of 𝑘 participants,
whose index is 𝑗∗, and accordingly extract the signature share 𝑧 (𝑗

∗)
𝑖

fromZ𝑖 for each 𝑖 ∈ 𝑆 (𝑗
∗) . So, he retrieves all 𝑘 participants’ public

commitments, indexed by 𝑗∗, and reconstructs 𝑅 (as per Section 5.1).
To complete 3-FBFT, participants aggregate the signature shares,
𝑧 =

∑
𝑖 𝑧
(𝑗∗)
𝑖

, and save 𝜎 = (𝑅, 𝑧) as the certificate of block𝑚.

5.2.2 5-FBFT (5-Phase Frosted-BFT). This variant introduces two
main changes to the BFT protocol (Section 4). First, it blends the
commitment protocol and the aggregate signature protocol into
the (normal case) PBFT. Second, it extends PBFT with additional
rounds to guarantee liveness in case Byzantine nodes play the
role of signers. We assume that each replica of the consensus pro-
tocol is a participant in the signing process. Replicas collaborate
to apply the threshold signature on the block agreed upon con-
sensus. As per Figure 4, 5-FBFT introduces new rounds in PBFT,
namely commitment-share and sign. The commitment-share and

9

M0

M1

M2

M3

pre-prepare prepare

D1,E1

D2,E2

D3,E3

D0,E0

commit

z0

z2

z1

zL

commitment
share sign

On timeout,
view-change on primary

block

z

z

z

timer

s1, Y1

s2, Y2

s3, Y3

Y

s0, Y0

5-FBFT

block z

(primary)

Repeated at most N-k+1 times

Figure 4: Normal operation (no faulty primary) of 5-FBFT.
Replicas exchange their public nonce commitments in the
prepare phase. In the commitment share phase, the primary
defines the 𝐿 parameter enabling the creation of partial sig-
natures. The latter are exchanged in the sign phase, enabling
replicas to aggregate the signature in a decentralized man-
ner.

sign rounds are executed according to ROAST (RObust ASynchro-
nous Threshold signatures), which wraps the FROST protocol as
described in [61]. When a replica 𝑖 receives the pre-prepare message
from primary, it runs the commitment protocol to randomly deter-
mine the nonce/commitment share pairs ((𝑑𝑖 , 𝑒𝑖), (𝐷𝑖 , 𝐸𝑖)). Public
commitments (𝐷𝑖 , 𝐸𝑖) are piggybacked to the prepare message and
exchanged with other replicas leveraging the PBFT protocol. The
primary holds a list of responsive signers, among which the set
of candidate signers will be defined. Replicas that send the public
commitments in their prepare message are considered as part of the
initial set of responsive signers, and will be considered as candidate
for the a signing session in the commitment-share phase.

After replicas exchange the commitmessages, a set of commitment-
share phases of 5-FBFT takes place. The primary defines a set of sign-
ers 𝑆 among active replicas; the selection policies for defining the set
𝑆 follow the rules of ROAST. 𝑆 has cardinality 𝛼 with 𝛼 = 𝑘 , includ-
ing the primary itself, and we require 𝑘 = 𝐹𝐵 +1 (see Section 4.2); in
such a configuration, at least a honest signer is included, thus pre-
venting forgery of aggregate signatures over invalid blocks. Even
though the primary might exclude nodes suspected to be poten-
tially unresponsive, malicious nodes are unknown a priori, so they
could still be included in 𝑆 . For this reason the primary can initiate
multiple and concurrent commitment-share sessions, maintaining
a set of responsive signers, i.e., signers that have responded to all
previous signing requests. As soon as there are at least 𝑘 responsive
signers in the set, the primary will initiate a new commitment-share
session. When the primary determines 𝑆 , he creates and sends the
list of signers’ public commitment 𝐿 = ⟨(𝑙, 𝐷𝑙 , 𝐸𝑙)⟩𝑙 ∈𝑆 to other repli-
cas. Knowing 𝐿 (and, consequently, 𝑆), other replicas can determine
all the information to compute the signature share on the block,
namely 𝜌𝑙 , 𝜆𝑙 , and 𝑐 , for 𝑙 ∈ 𝑆 .

The sign phase of 5-FBFT allows replicas to run the aggregate
signature protocol presented in Section 5.1. They create and ex-
change with the primary the signature shares 𝑧𝑖 , with 𝑖 ∈ {1, . . . , 𝛼},
together with a new public commitment to be possibly used in an-
other commitment-share session. If any signature share 𝑧𝑖 is not
valid, the primary marks the replica as malicious, so that it will
not be included in subsequent commitment-share phases. When
the primary receives all other signature shares 𝑧𝑖 , with 𝑖 ∈ 𝑆 , it
can combine them to derive the aggregate signature 𝑧 =

∑
𝑖 𝑧𝑖 .

The aggregate signature 𝜎 = (𝑅, 𝑧) certifies the block 𝑚. When
the aggregate signature is correctly defined, the primary broad-
casts the block and complete 5-FBFT. As demonstrated in ROAST,
the commitment-share sessions will eventually finish, and a non-
faulty primary will receive all the signatures, in at most 𝑁 − 𝑘 + 1
commitment-share sessions, under the hypothesis that the number
of possible backup replica failures 𝐹𝐵 + 𝐹𝐶 is at most 𝑁 − 𝑘 . The
view-change protocol described in Section 4.6 allows to provide
liveness also in presence of a faulty primary, which delays (but
does not compromise) the ROAST protocol. When a view change is
triggered by the block timeout, the (possibly new) primary replica
will act as a new semi-trusted coordinator, that will run again the
aggregate signature protocol. Note that the view-change cannot
change values the quorum has agreed upon, so the block content
cannot be updated. It is also worth pointing out that, thanks to
the properties of threshold signatures, even if the set of signers
𝑆 and related parameters change, a valid aggregate signature will
be produced. This property follows from Lagrange interpolation:
A different set of participants basically provides a different set of
points over the same 𝑡 − 1 degree polynomial, where the signature
secret lies.

6 RELATEDWORK
This work draws on ideas from three research areas: permissioned
DLTs, fault tolerant consensus algorithms, and signature schemes.

6.1 Permissioned DLTs
Even if Bitcoin is primarily designed for the public network, there
exist previous examples of Bitcoin-like ledger meant for private
networks. In particular, Elements24, whose production deployment—
the “Liquid” sidechain [53]—uses a BFT consensus algorithm within
a permissioned mining network consisting of cryptocurrency busi-
nesses25. Elements provides additional features with respect to
Bitcoin, including confidential assets [58] and more advanced pro-
gramming capabilities, which may be further expanded [54].

Elements is the closest piece of previous work in terms of tech-
nologies and Bitcoin reuse goals. However, to the best of our knowl-
edge, no public specification for its proprietary BFT approach exists,
and the open sourced components26 do not include its implementa-
tion.

The second largest DLT born public and then adapted to permis-
sioned settings is Ethereum [76]. For example, an Ethereum-like
ledger designed for private networks is Hyperledger Besu27, which
supports a PoA consensus based on Istambul BFT [51]. An imple-
mentation is available in open source28. Another Ethereum-like
ledger designed for private networks is Concord29. This is possibly
the closest work to ours, in spirit, but (i) it implements SBFT [41]
instead of PBFT as a consensus algorithm (a quality open source
implementation exists30); (ii) it works with BLS signatures instead

24https://blockstream.com/elements
25https://help.blockstream.com/hc/en-us/articles/900003013143-What-is-the-
Liquid-Federation-
26https://github.com/ElementsProject
27https://www.hyperledger.org/use/besu
28https://github.com/hyperledger/besu/tree/main/consensus/ibft
29https://blogs.vmware.com/opensource/2018/08/28/meet-project-concord
30https://github.com/vmware/concord-bft

10

https://blockstream.com/elements
https://help.blockstream.com/hc/en-us/articles/900003013143-What-is-the-Liquid-Federation-
https://help.blockstream.com/hc/en-us/articles/900003013143-What-is-the-Liquid-Federation-
https://github.com/ElementsProject
https://www.hyperledger.org/use/besu
https://github.com/hyperledger/besu/tree/main/consensus/ibft
https://blogs.vmware.com/opensource/2018/08/28/meet-project-concord
https://github.com/vmware/concord-bft

of Schnorr to generate a quorum certificate; and (iii) it has Ethereum
instead of Bitcoin as a foundation.

Point (iii) is a profound differentiator, for the reasons we discuss
in Section 1.3. In particular, with respect to the “focus”, “reliability”,
and “extensibility” dimensions, it is worth noting that Ethereum
exhibits a Turing-complete language as a key feature, and focuses
on the development of complex decentralized applications via smart
contracts, more than on digital payments. Among the relevant ap-
plications of its smart contracts, we find the issuance of cryptocur-
rency tokens [75], NFTs [27], the creation of financial businesses
that do not rely on intermediaries (e.g., decentralized exchanges [6],
DeFi applications). Several of these decentralized applications have
experienced attacks by cybercriminals [69], not rarely executed by
leveraging the subtleties of the scripting language.

There is a host of other relevant permissioned DLTs, whose main
difference with respect to our approach is the absence—by design—
of any attempt to profit from existing code bases and software
from major public blockchains: They are custom DLTs, that often
redesign/reimplement much from scratch. Notable examples are:
• Hyperledger Fabric31, a general purpose DLT that enables the de-
velopment of enterprise applications, not necessarily financial; it
is designed particularly for private networks. Among its compo-
nents, there is a BFT consensusmodule based on BFT-SMaRT [14],
but its development appears to have been stopped32.
• Corda33, a DLT designed for the financial industry. It has a token-
based data model (UTXO) like Bitcoin, and a Turing-complete
programming language like Ethereum. Its main applications are
the issuing of digital assets, or currencies, payments, and global
trade. It has a pluggable consensus mechanism: Its “notaries” can
run either a crash fault tolerant (CFT) consensus, such as RAFT,
or a BFT consensus, like PBFT. Neither the BFT specification nor
its implementation are available in the open source repository34,
and apparently no aggregated signature scheme is included.
• Hyperledger Sawtooth35 allows to deploy private DLT networks
with a variety of consensus algorithms, including PBFT and Proof
of Elapsed Time [25], a recent proposal which uses a trusted
execution engine to securely generate a random waiting time
and then choose a node with the smallest waiting. Sawtooth
has an open source implementation36, with an incomplete PBFT
implementation and no FROST-like signature aggregation.
• Diem37 (formerly Libra) is a novel DLT platform which imple-
ments a Turing-complete programming language designed for
safe and verifiable transaction-oriented computation. It employs
a custom BFT algorithm called DiemBFT [12] based on Hot-
stuff [81], which has an open source implementation38.
Finally, there is Hamilton [50], which is close to our approach in

terms of use cases: It is a DLT designed to support payments in a
private network. It exhibits a token-based data model, and it has
an open source implementation39. It inherits certain elements from
31https://www.hyperledger.org/use/fabric
32https://github.com/bft-smart/fabric-orderingservice
33https://www.corda.net
34https://github.com/corda
35https://www.hyperledger.org/use/sawtooth
36https://github.com/hyperledger/sawtooth-pbft
37https://developers.diem.com/docs/welcome-to-diem
38https://github.com/diem/diem/tree/main/consensus
39https://github.com/mit-dci/opencbdc-tx

Bitcoin (such as the UTXO model and even the elliptic curve used
in all cryptographic primitives). Relevant differences: its ledger is
not a blockchain; its consensus protocol is not Byzantine but CFT;
its ledger is meant to stay private; its main focus is on obtaining
transactional scalability on-ledger.

6.2 Byzantine Fault Tolerance
Lamport et al. [47] firstly introduced the problem of a distributed
system reaching agreement in the presence of Byzantine failures.
Different surveys review the most relevant BFT consensus protocols
(e.g., [5, 32, 55, 63, 79]). PBFT by Castro and Liskov [22, 23] is
considered the reference solution for practical implementations.

In PBFT, replicas exchange messages using an all-to-all com-
munication pattern, hence PBFT does not scale well; attempts to
optimize it exist, along different directions, such as communication
pattern (e.g., [41, 81]), leader rotation (e.g., [2, 17, 71, 74]), view-
change optimization (e.g., [17, 19]), pipelining (e.g., [19, 81]), and
speculative/optimistic execution (e.g., [1, 7, 41, 46, 56, 71]).

The adoption of “collectors” reduces the number of exchanged
messages, obtaining a linear communication pattern. A collector is a
designated replica (usually the leader) that receives and broadcasts
messages to all the other replicas. Based on this idea, SBFT [41] uses
a dual-mode protocol with an optimistic fast path (when replicas
are mostly in sync) and a fallback slow path (more PBFT-like). This
dual-mode protocol increases complexity in favor of performance.

To avoid dual-mode, HotStuff [81] uses a collector in combination
with threshold signatures to generate a quorum certificate for each
protocol phase. This is the most closely related work to ours. By
using a single collector, HotStuff increases the protocol complexity
to avoid weakening its robustness, to face cases when, e.g., the
collector himself is a Byzantine node.

DiemBFT [71] enhances HotStuff to improve throughput. Using
a Pacemaker mechanism, whose design is however not fully speci-
fied, DiemBFT synchronizes the consensus phases to simplify the
consensus protocol. However, DiemBFT, just like HotStuff, does
not aggregate quorum signatures in a fully decentralized manner.

In PBFT, the leader changes only when a problem is detected.
As an alternative, the rotating leader strategy [74] proposes to
change the leader after every attempt to commit (e.g., [17, 81]). To
efficiently solve the leader selection problem, deterministic as well
as more sophisticated policies have been proposed (e.g., [2, 71]).
We postpone as future work the design of a more sophisticated
consensus policy with better fairness properties (cfr. Section 7).

As we have discussed, it was the advent of blockchains to renew
the interested in consensus algorithms (e.g., [17, 19, 40, 51, 71]).
Notably, PoS [43] was quickly proposed as an alternative to PoW,
known to have energy consumption issues, especially for permis-
sionless blockchains (e.g., [11, 13, 19]). Research on PoS led to two
main approaches: One proposes a chain-based PoS that mimics PoW
(e.g., [13, 42]); the other proposes a BFT-based PoS, where randomly
selected nodes participate in a multi-round voting protocol to de-
termine the next blocks to append (e.g., [19, 40, 67]). BFT-inspired
protocols are preferred due to their deterministic block finality.

Other notable work in this area include: Istanbul BFT [51], a vari-
ant of PBFT tailored for blockchains; Pass and Shi [56] work on a
consensus protocol for permissioned and permissionless blockchains

11

https://www.hyperledger.org/use/fabric
https://github.com/bft-smart/fabric-orderingservice
https://www.corda.net
https://github.com/corda
https://www.hyperledger.org/use/sawtooth
https://github.com/hyperledger/sawtooth-pbft
https://developers.diem.com/docs/welcome-to-diem
https://github.com/diem/diem/tree/main/consensus
https://github.com/mit-dci/opencbdc-tx

that combines a fast path and a slow one (as SBFT does); Algo-
rand [40] and its proposal to scale PBFT by seeking consensus only
on a subset of two-thirds of nodes, selected using PoS. These works
do not consider quorum certificates or aggregated block signatures.
Byzcoin [44] combines the use of PoWwith BFT protocols to realize
highly-performant open consensus protocols.

In contrast to all these scalability-oriented works, our setting
considers a limited number of miners and expresses the calmness
requirement (P4). Therefore, we seek protocols that favor simplicity
and robustness, and focus on their tight integration with Bitcoin.

6.3 Threshold signatures
In threshold signature schemes, at least 𝑘 participants over 𝑛, with
𝑘 ≤ 𝑛, collaborate for generating a valid signature on-behalf of the
group. Shoup [66] defined one of the most used threshold signature
schemes, based on RSA (e.g., [20, 41, 70, 81]). It requires a trusted,
centralized dealer for key generation, and then uses non-interactive
signature share generation and signature verification protocols.

Unfortunately, both the RSA signature scheme and the trusted
dealer make this solution unsuited to our Bitcoin-derived setting.

Gennaro et al. [38] propose a threshold DSA signature scheme,
with 𝑘 < 𝑛/2, where a trusted centralized dealer is adopted. In [37],
Gennaro et al. propose a dealer-less approach supporting the case
𝑘 < 𝑛. However, DKG is costly and impractical. Then, Gennaro and
Goldfeder [35, 36] presented an ECDSA-based protocol supporting
efficient DKG, obtaining faster signing than [37] and requiring less
data to be transmitted. In a closely related work, Lindell et al. [49]
propose an efficient threshold ECDSA scheme, which employs dif-
ferent methods to neutralize any adversarial behavior.

A detailed (and more extensive) review of threshold ECDSA
schemes can be found in [8]. Although ECDSA is fast and secure,
aggregated signatures cannot be easily obtained with it, so we
avoided this route.

Conversely, BLS [16] and Schnorr [64] schemes can be easily
transformed into threshold versions by supporting the sum of par-
tial signatures with no overhead [28].40 In particular, Boldyreva [15]
proposed the most widely adopted approach for threshold BLS sig-
natures. DKG does not require a trusted dealer, and the signature
generation does not require participant interaction (or any zero-
knowledge proof). It can only tolerate up to 𝑘 < 𝑛/2 malicious
parties, but it allows to periodically renew the secret shares.

Most BFT protocols with a collector use threshold BLS signatures
(e.g., [41, 71, 81]). Recently, Tomescu et al. [73] proposed a more
efficient BLS signature scheme, that improves signing and verifica-
tion time. Threshold BLS signature schemes rely on pairing-based
cryptography [16]; however, in practice, this may be undesirable,
due to the challenging implementation and to the need to maintain
backwards compatibility with existing signature schemes.

Schnorr signatures received increased interest recently, and
they have been included in the Bitcoin protocol. Komlo and Gold-
berg [45] propose FROST, an efficient Schnorr-based threshold
scheme, whereby signing can be performed in two rounds, or opti-
mized to a single round with preprocessing. FROST is currently con-
sidered the most efficient scheme for generating threshold Schnorr
40Schnorr and BLS signature schemes natively work with elliptic curves. While signa-
ture verification in BLS is more computationally demanding than ECDSA and Schnorr,
signature generation in BLS is completely deterministic (thus preventing tampering).

signatures [26], and is the one we have adopted in the present
work. Ruffing et al. [61] propose ROAST (RObust ASynchronous
Schnorr Threshold Signatures), a wrapper protocol around FROST
that provides liveness guarantees in presence of malicious nodes
and asynchronous networks. The 5-FBFT protocol we propose con-
siders the idea introduced by ROAST to guarantee liveness while
aggregating signature shares in the case of Byzantine signers.

7 FUTUREWORK
We are working on two primary research topics, both of which aim
at making our prototype closer to a deployable, real-world solution:
One concerns the improvement of the core PoA consensus algo-
rithm itself (“Dynamic federation” and “Improved fairness” sections);
the second one involves programming the blockchain to generate
layer-2 constructions that contribute the missing features we expect
of actual retail payment systems (“Privacy and Scalability”).

Dynamic federation. Our mining network configuration is cur-
rently static: Miners are assigned their role at the beginning and
cannot be changed without recreating the whole blockchain. This
is unacceptable for real-world use, since dynamic reconfigurations
are bound to happen for a variety of reasons: e.g., a member may
need to change its public key periodically; a new member may need
to join the federation; members may be removed. One hypothetical
solution is to represent voting rights as non-fungible tokens (NFT)
in our very chain: Block validity conditions would be the same as
the spending condition of an NFT on the chain, and a transfer of
the NFT would represent a change in the mining configuration.

Improved fairness. When BFT algorithms are used in blockchains,
full fairness41 is not achieved unless the primary can generate at
most a single block before a view change. This would prevent a
Byzantine primary to censor transactions. A fair mining network
needs to rotate the leader at each block, e.g., using an election
technique based on cryptographic sortition via Verifiable Random
Functions from Algorand [39].

Privacy and Scalability. Our prospective model assumes that
most of the privacy and scalability issues of actual retail payments
are solved at the 2𝑛𝑑 layer. In particular we are experimenting
with a dedicated Payment Channel Network similar to the Bitcoin
Lightning [59], but with a less spontaneous topology, one that better
fits our permissioned scenario and that is programmed over the
distributed engine presented in this paper. Some assessments of, e.g.,
the scalability of Lightning Network already exist [72]; however,
to get the whole picture we need to consider how different factors
interplay: the raw throughput of the network, its business-driven
topology, the level of privacy achieved by participants, and the costs
of locking liquidity into channels by the routing intermediaries.

In addition, we are setting up a realistic scenario in which to
measure the latency and volumes supported by our network at the
first and second layer, including simulated Byzantine failures42.

41We use the Chain Quality property definition from [33, 34], with parameters 𝜇 ∈ R
and 𝑙 ∈ N, which states that, for any honest party 𝑃 with chain𝐶 , it holds that, for
any consecutive 𝑙 blocks of𝐶 , the ratio of honest blocks is at least 𝜇. In our model,
ideal fairness requires the Chain Quality property to hold for 𝜇 = 1 − 𝐹𝐵/𝑁 (ideal
chain quality). Note that we do not need to include crash failures since they cannot
contribute negatively to the chain quality.
42Test frameworks for Byzantine failures such as Twins [10] are being used.

12

8 CONCLUSIONS
We presented a Bitcoin-like, permissioned, distributed ledger in
which valid blocks are signed by a federation of trusted actors
and transactions enjoy deterministic finality. Block signatures are
aggregated via a threshold scheme based on FROST, that preserves
the confidentiality of the mining configuration and quorum. We
showed how such a federation, via PBFT, could operate correctly
also under Byzantine failures of a subset of the nodes.

Our design embodies one way of inheriting all the algorithms,
data structures, and software of Bitcoin—but its PoW-based consen-
sus protocol—in order to make its full technological stack openly
available to permissioned settings managed by trusted actors.

What for? Bitcoin has inspired innumerable other blockchains
and is perhaps the closest thing we have to an open standard for
payments in the “crypto domain”. It is possible that its technological
stack—constantly scrutinized, improved, evolved43—will one day
percolate44 into the blockchain-friendly portion of the banking and
financial ecosystem for old and new use cases. Solutions such as
the one we present here pave the way for such a possibility.

REFERENCES
[1] Ittai Abraham, Guy Gueta, Dahlia Malkhi, Lorenzo Alvisi, Rama Kotla, and Jean-

Philippe Martin. 2017. Revisiting Fast Practical Byzantine Fault Tolerance. (2017).
arXiv:1712.01367

[2] Ittai Abraham, Dahlia Malkhi, and Alexander Spiegelman. 2019. Asymptotically
Optimal Validated Asynchronous Byzantine Agreement. In Proceedings of the
2019 ACM Symposium on Principles of Distributed Computing (PODC ’19). ACM,
337–346. https://doi.org/10.1145/3293611.3331612

[3] Karl-Johan Alm and Anthony Towns. 2019. Signet. Bitcoin Improvement Proposal
325 (2019). https://github.com/bitcoin/bips/blob/master/bip-0325.mediawiki

[4] Kurt M Alonso and Koe. 2020. Zero to Monero. Technical Report. Monero.
[5] Shikah J. Alsunaidi and Fahd A. Alhaidari. 2019. A Survey of Consensus Algo-

rithms for Blockchain Technology. In Proceedings of the International Conference
on Computer and Information Sciences (ICCIS). 1–6. https://doi.org/10.1109/
ICCISci.2019.8716424

[6] Guillermo Angeris, Hsien-Tang Kao, Rei Chiang, Charlie Noyes, and Tarun Chitra.
2019. An analysis of Uniswap markets. arXiv:1911.03380 (2019).

[7] Pierre-Louis Aublin, Rachid Guerraoui, Nikola Knežević, Vivien Quéma, and
Marko Vukolić. 2015. The Next 700 BFT Protocols. ACM Trans. Comput. Syst. 32,
4, Article 12 (2015), 45 pages. https://doi.org/10.1145/2658994

[8] Jean-Philippe Aumasson, AdrianHamelink, and Omer Shlomovits. 2020. A Survey
of ECDSA Threshold Signing. IACR Cryptol. ePrint Arch. 2020 (2020), 1390.

[9] European Central Bank. 2020. Report on a digital euro. ECB publica-
tions (2020). https://www.ecb.europa.eu/pub/pdf/other/Report_on_a_digital_
euro~4d7268b458.en.pdf

[10] Shehar Bano, Alberto Sonnino, Andrey Chursin, Dmitri Perelman, and Dahlia
Malkhi. 2020. Twins: White-glove approach for BFT testing. arXiv:2004.10617
(2020).

[11] Imran Bashir. 2020. Mastering Blockchain: A Deep Dive into Distributed Ledgers,
Consensus Protocols, Smart Contracts, Dapps, Cryptocurrencies, Ethereum, and
More. Packt Publishing Ltd.

[12] Mathieu Baudet, Avery Ching, Andrey Chursin, George Danezis, François Garillot,
Zekun Li, Dahlia Malkhi, Oded Naor, Dmitri Perelman, and Alberto Sonnino.
2019. State machine replication in the Libra blockchain. Technical Report. The
Libra Association.

43As an example of the forward-thinking surrounding the eldest blockchain, consider
that work exists suggesting how to transform its cryptographic apparatus into a
quantum-resistant one, even on-the-fly during a quantum attack, via a soft fork [68].
44This perspective has famed historical precedents. It is not unlike reusing the exact
same technological stack from a decentralized, public network (the Internet) into
private, “permissioned” networks (intranets): TCP/IP. At the dawn of the networking
era, the idea of a convergent public/private stack was unheard of, and a host of
custom, proprietary networking suites were deployed for “permissioned” use cases.
But eventually, the good-enough and widely adopted TCP/IP won over most specialized
(and mutually incompatible) protocols. It became a de facto standard. We are a very
long way from a similar turn of events in the realm of digital payment systems. And, it
may well be argued that a shared technological ground is unlikely to ever materialize.
Still, we proved the idea makes technical sense, and we would better be ready.

[13] Iddo Bentov, Ariel Gabizon, and Alex Mizrahi. 2016. Cryptocurrencies Without
Proof of Work. In Proceedings of the 20th Internation Conference on Financial
Cryptography and Data Security. Springer, 142–157.

[14] Alysson Bessani, João Sousa, and Eduardo EP Alchieri. 2014. State machine
replication for the masses with BFT-SMART. In 2014 44th Annual IEEE/IFIP Inter-
national Conference on Dependable Systems and Networks. IEEE, 355–362.

[15] Alexandra Boldyreva. 2002. Threshold Signatures, Multisignatures and Blind
Signatures Based on the Gap-Diffie-Hellman-Group Signature Scheme. In Public
Key Cryptography — PKC 2003, Yvo G. Desmedt (Ed.). Springer, 31–46.

[16] Dan Boneh, Ben Lynn, and Hovav Shacham. 2004. Short Signatures from the
Weil Pairing. J. Cryptol. 17, 4 (2004), 297–319. https://doi.org/10.1007/s00145-
004-0314-9

[17] Ethan Buchman. 2016. Tendermint: Byzantine Fault Tolerance in the Age of
Blockchains. Ph. D. Dissertation. University of Guelph.

[18] Vitalik Buterin. 2014. Ethereum White Paper: A Next Generation Smart Contract
& Decentralized Application Platform. Technical Report. Ethereum. https://
ethereum.org/en/whitepaper/

[19] Vitalik Buterin and Virgil Griffith. 2019. Casper the Friendly Finality Gadget.
arXiv:1710.09437 (2019).

[20] Christian Cachin, Klaus Kursawe, and Victor Shoup. 2005. Random Oracles in
Constantinople: Practical Asynchronous Byzantine Agreement Using Cryptogra-
phy. J. Cryptol. 18, 3 (2005), 219–246. https://doi.org/10.1007/s00145-005-0318-0

[21] Liang Cai, Yi Sun, Zibin Zheng, Jiang Xiao, and Weiwei Qiu. 2021. Blockchain in
China. Commun. ACM 64, 11 (2021), 88–93.

[22] Miguel Castro and Barbara Liskov. 1999. Practical Byzantine Fault Tolerance. In
Proceedings of the Third Symposium on Operating Systems Design and Implemen-
tation (OSDI ’99). USENIX Association, USA, 173–186.

[23] Miguel Castro and Barbara Liskov. 2002. Practical Byzantine Fault Tolerance
and Proactive Recovery. ACM Trans. Comput. Syst. 20, 4 (2002), 398–461. https:
//doi.org/10.1145/571637.571640

[24] David Chaum, Christian Grothoff, and Thomas Moser. 2021. How to issue a
central bank digital currency. Available at SSRN 3965032 (2021).

[25] Lin Chen, Lei Xu, Nolan Shah, Zhimin Gao, Yang Lu, and Weidong Shi. 2017. On
security analysis of proof-of-elapsed-time (poet). In International Symposium on
Stabilization, Safety, and Security of Distributed Systems. Springer, 282–297.

[26] Elizabeth Crites, Chelsea Komlo, and Mary Maller. 2021. How to Prove Schnorr
Assuming Schnorr: Security of Multi- and Threshold Signatures. Cryptology
ePrint Archive (2021). https://ia.cr/2021/1375

[27] William Entriken, Dieter Shirley, Jacob Evans, and Nastassia Sachs. 2018. EIP-721:
ERC-721 non-fungible token standard. Ethereum Improvement Proposals 721
(2018).

[28] Sinan Ergezer, Holger Kinkelin, and Filip Rezabek. 2020. A survey on threshold
signature schemes. Technical Report.

[29] Paul Feldman. 1987. A practical scheme for non-interactive verifiable secret
sharing. In Proceedings of the 28th Annual Symposium on Foundations of Computer
Science. 427–438. https://doi.org/10.1109/SFCS.1987.4

[30] Michael J Fischer, Nancy A Lynch, and Michael S Paterson. 1985. Impossibility
of distributed consensus with one faulty process. Journal of the ACM (JACM) 32,
2 (1985), 374–382.

[31] Daniele Fornaro. 2018. Elliptic curve hierarchical deterministic private key se-
quences: Bitcoin standards and best practices. Technical Report. Politecnico di
Milano. https://www.politesi.polimi.it/handle/10589/140112

[32] Juan Garay and Aggelos Kiayias. 2020. SoK: A Consensus Taxonomy in the
Blockchain Era. In Topics in Cryptology – CT-RSA 2020, Stanislaw Jarecki (Ed.).
Springer, 284–318.

[33] Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. 2015. The Bitcoin Back-
bone Protocol: Analysis and Applications. In EUROCRYPT (2) (Lecture Notes in
Computer Science, Vol. 9057). Springer, 281–310.

[34] Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. 2020. Full Analysis of
Nakamoto Consensus in Bounded-Delay Networks. IACR Cryptol. ePrint Arch.
(2020), 277.

[35] Rosario Gennaro and Steven Goldfeder. 2018. Fast Multiparty Threshold ECDSA
with Fast Trustless Setup. In Proceedings of the 2018 ACM SIGSAC Conference
on Computer and Communications Security (Toronto, Canada) (CCS ’18). ACM,
1179–1194. https://doi.org/10.1145/3243734.3243859

[36] Rosario Gennaro and Steven Goldfeder. 2020. One Round Threshold ECDSA
with Identifiable Abort. Cryptology ePrint Archive, Report 2020/540 (2020). https:
//ia.cr/2020/540

[37] Rosario Gennaro, Steven Goldfeder, and Arvind Narayanan. 2016. Threshold-
optimal DSA/ECDSA Signatures and an Application to BitcoinWallet Security. In
Applied Cryptography and Network Security, Mark Manulis, Ahmad-Reza Sadeghi,
and Steve Schneider (Eds.). Springer, 156–174.

[38] Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and Tal Rabin. 2001. Robust
Threshold DSS Signatures. Information and Computation 164, 1 (2001), 54–84.
https://doi.org/10.1006/inco.2000.2881

[39] Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai Zel-
dovich. 2017. Algorand: Scaling byzantine agreements for cryptocurrencies. In
Proceedings of the 26th symposium on operating systems principles. 51–68.

13

https://arxiv.org/abs/1712.01367
https://doi.org/10.1145/3293611.3331612
https://github.com/bitcoin/bips/blob/master/bip-0325.mediawiki
https://doi.org/10.1109/ICCISci.2019.8716424
https://doi.org/10.1109/ICCISci.2019.8716424
https://doi.org/10.1145/2658994
https://www.ecb.europa.eu/pub/pdf/other/Report_on_a_digital_euro~4d7268b458.en.pdf
https://www.ecb.europa.eu/pub/pdf/other/Report_on_a_digital_euro~4d7268b458.en.pdf
https://doi.org/10.1007/s00145-004-0314-9
https://doi.org/10.1007/s00145-004-0314-9
https://ethereum.org/en/whitepaper/
https://ethereum.org/en/whitepaper/
https://doi.org/10.1007/s00145-005-0318-0
https://doi.org/10.1145/571637.571640
https://doi.org/10.1145/571637.571640
https://ia.cr/2021/1375
https://doi.org/10.1109/SFCS.1987.4
https://www.politesi.polimi.it/handle/10589/140112
https://doi.org/10.1145/3243734.3243859
https://ia.cr/2020/540
https://ia.cr/2020/540
https://doi.org/10.1006/inco.2000.2881

[40] Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai Zel-
dovich. 2017. Algorand: Scaling Byzantine Agreements for Cryptocurrencies. In
Proceedings of the 26th Symposium on Operating Systems Principles (SOSP ’17).
ACM, New York, NY, USA, 51–68. https://doi.org/10.1145/3132747.3132757

[41] Guy Golan Gueta, Ittai Abraham, Shelly Grossman, Dahlia Malkhi, Benny Pinkas,
Michael Reiter, Dragos-Adrian Seredinschi, Orr Tamir, and Alin Tomescu. 2019.
SBFT: A Scalable and Decentralized Trust Infrastructure. In Proceedings of the 49th
Annual IEEE/IFIP International Conference on Dependable Systems and Networks
(DSN). 568–580. https://doi.org/10.1109/DSN.2019.00063

[42] Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov. 2017.
Ouroboros: A Provably Secure Proof-of-stake Blockchain Protocol. In Advances
in Cryptology – CRYPTO 2017, Jonathan Katz and Hovav Shacham (Eds.). Springer
International Publishing, Cham, 357–388.

[43] Sunny King and Scott Nadal. 2012. Ppcoin: Peer-to-peer crypto-currency with proof-
of-stake. Technical Report. https://www.peercoin.net/whitepapers/peercoin-
paper.pdf

[44] Eleftherios Kokoris-Kogias, Philipp Jovanovic, Nicolas Gailly, Ismail Khoffi, Linus
Gasser, and Bryan Ford. 2016. Enhancing Bitcoin Security and Performance
with Strong Consistency via Collective Signing. In USENIX Security Symposium.
USENIX Association, 279–296.

[45] Chelsea Komlo and IanGoldberg. 2020. FROST: Flexible Round-optimized Schnorr
Threshold Signatures. IACR Cryptol. ePrint Arch. 2020 (2020), 852.

[46] Ramakrishna Kotla, Lorenzo Alvisi, Mike Dahlin, Allen Clement, and Edmund
Wong. 2010. Zyzzyva: Speculative Byzantine Fault Tolerance. ACM Transactions
on Computer Systems 27, 4, Article 7 (2010), 39 pages. https://doi.org/10.1145/
1658357.1658358

[47] Leslie Lamport, Robert Shostak, and Marshall Pease. 1982. The Byzantine Gener-
als Problem. ACM Transactions on Programming Languages and Systems (1982),
382–401.

[48] Suhyeon Lee and Seungjoo Kim. 2020. Short Selling Attack: A Self-Destructive
But Profitable 51% Attack On PoS Blockchains. Cryptology ePrint Archive.
https://ia.cr/2020/019.

[49] Yehuda Lindell and Ariel Nof. 2018. Fast Secure Multiparty ECDSA with Practical
Distributed Key Generation and Applications to Cryptocurrency Custody. In
Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications
Security (Toronto, Canada) (CCS ’18). ACM, 1837–1854. https://doi.org/10.1145/
3243734.3243788

[50] James Lovejoy, Cory Fields, Madars Virza, Tyler Frederick, David Urness, Kevin
Karwaski, Anders Brownworth, and Neha Narula. 2022. A High Performance
Payment Processing System Designed for Central Bank Digital Currencies. Cryp-
tology ePrint Archive (2022).

[51] Henrique Moniz. 2020. The Istanbul BFT Consensus Algorithm. arXiv:2002.03613
(2020).

[52] Satoshi Nakamoto. 2008. Bitcoin: A peer-to-peer electronic cash system. (2008).
http://bitcoin.org/bitcoin.pdf

[53] Jonas Nick, Andrew Poelstra, and Gregory Sanders. 2020. Liquid: A Bitcoin
Sidechain. Technical Report. Liquid. https://blockstream.com/assets/downloads/
pdf/liquid-whitepaper.pdf

[54] Russell O’Connor. 2017. Simplicity: A new language for blockchains. In Proceed-
ings of the 2017 Workshop on Programming Languages and Analysis for Security.
107–120.

[55] Sunny Pahlajani, Avinash Kshirsagar, and Vinod Pachghare. 2019. Survey on
Private Blockchain Consensus Algorithms. In Proceedings of the 1st International
Conference on Innovations in Information and Communication Technology (ICIICT).
1–6. https://doi.org/10.1109/ICIICT1.2019.8741353

[56] Rafael Pass and Elaine Shi. 2018. Thunderella: Blockchains with Optimistic
Instant Confirmation. In Advances in Cryptology – EUROCRYPT 2018, Jesper Buus
Nielsen and Vincent Rijmen (Eds.). Springer International Publishing, Cham,
3–33.

[57] Torben Pryds Pedersen. 1991. A Threshold Cryptosystem without a Trusted
Party. In Advances in Cryptology – EUROCRYPT ’91, Donald W. Davies (Ed.).
Springer, 522–526.

[58] Andrew Poelstra, Adam Back, Mark Friedenbach, Gregory Maxwell, and Pieter
Wuille. 2018. Confidential assets. In International Conference on Financial Cryp-
tography and Data Security. Springer, 43–63.

[59] Joseph Poon and Thaddeus Dryja. 2016. The bitcoin lightning network: Scalable
off-chain instant payments.

[60] Federal Reserve. 2022. Money and Payments: The US Dollar in the Age of Digital
Transformation. Federal Reserve publications (2022). https://www.federalreserve.
gov/publications/money-and-payments-discussion-paper.htm

[61] Tim Ruffing, Viktoria Ronge, Elliott Jin, Jonas Schneider-Bensch, and Dominique
Schröder. 2022. ROAST: Robust Asynchronous Schnorr Threshold Signatures.
Cryptology ePrint Archive (2022).

[62] Muhammad Saad, Jeffrey Spaulding, Laurent Njilla, Charles Kamhoua, Sachin
Shetty, DaeHun Nyang, and David Mohaisen. 2020. Exploring the Attack Surface
of Blockchain: A Comprehensive Survey. IEEE Communications Surveys Tutorials
22, 3 (2020), 1977–2008. https://doi.org/10.1109/COMST.2020.2975999

[63] Lakshmi Siva Sankar, M. Sindhu, and M. Sethumadhavan. 2017. Survey of con-
sensus protocols on blockchain applications. In Proceedings of the 4th Interna-
tional Conference on Advanced Computing and Communication Systems. 1–5.
https://doi.org/10.1109/ICACCS.2017.8014672

[64] Claus-Peter Schnorr. 1989. Efficient identification and signatures for smart cards.
In Conference on the Theory and Application of Cryptology. Springer, 239–252.

[65] Adi Shamir. 1979. How to Share a Secret. Commun. ACM 22, 11 (1979), 612–613.
https://doi.org/10.1145/359168.359176

[66] Victor Shoup. 2000. Practical Threshold Signatures. In Advances in Cryptol-
ogy – EUROCRYPT 2000, Bart Preneel (Ed.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 207–220.

[67] Anping Song, Jing Wang, Wenjing Yu, Yi Dai, and Hongtao Zhu. 2019. Fast, Dy-
namic and Robust Byzantine Fault Tolerance Protocol for Consortium Blockchain.
In Proceedings of the 2019 IEEE Intl Conf on Parallel & Distributed Processing with
Applications, Big Data & Cloud Computing, Sustainable Computing & Communi-
cations, Social Computing & Networking (ISPA/BDCloud/SocialCom/SustainCom).
IEEE, 419–426.

[68] Iain Stewart, Daniel Ilie, Alexei Zamyatin, SamWerner, MF Torshizi, andWilliam J
Knottenbelt. 2018. Committing to quantum resistance: a slow defence for Bitcoin
against a fast quantum computing attack. Royal Society open science 5, 6 (2018),
180410.

[69] Liya Su, Xinyue Shen, Xiangyu Du, Xiaojing Liao, XiaoFeng Wang, Luyi Xing,
and Baoxu Liu. 2021. Evil Under the Sun: Understanding and Discovering Attacks
on Ethereum Decentralized Applications. In 30th USENIX Security Symposium
(USENIX Security 21). 1307–1324.

[70] Quang Tung Thai, Jong-Chul Yim, Tae-Whan Yoo, Hyun-Kyung Yoo, Ji-Young
Kwak, and Sun-Me Kim. 2019. Hierarchical Byzantine Fault-tolerance Protocol
for Permissioned Blockchain Systems. Journal of Supercomputing 75, 11 (2019),
7337–7365.

[71] The Diem Team. 2021. DiemBFT v4: State Machine Replication in the Diem
Blockchain. techreport. Facebook, Inc. https://developers.diem.com/papers/diem-
consensus-state-machine-replication-in-the-diem-blockchain/2021-08-17.pdf

[72] Sergei Tikhomirov, Pedro Moreno-Sanchez, and Matteo Maffei. 2020. A quantita-
tive analysis of security, anonymity and scalability for the lightning network. In
2020 IEEE European Symposium on Security and Privacy Workshops (EuroS&PW).
IEEE, 387–396.

[73] Alin Tomescu, Robert Chen, Yiming Zheng, Ittai Abraham, Benny Pinkas,
Guy Golan Gueta, and Srinivas Devadas. 2020. Towards Scalable Threshold
Cryptosystems. In Proceedings of the 2020 IEEE Symposium on Security and Pri-
vacy. 877–893. https://doi.org/10.1109/SP40000.2020.00059

[74] Giuliana Santos Veronese, Miguel Correia, Alysson Neves Bessani, and Lau Cheuk
Lung. 2009. Spin One’s Wheels? Byzantine Fault Tolerance with a Spinning
Primary. In Proceedings of the 28th IEEE International Symposium on Reliable
Distributed Systems. 135–144. https://doi.org/10.1109/SRDS.2009.36

[75] Fabian Vogelsteller and Vitalik Buterin. 2015. Eip 20: Erc-20 token standard.
Ethereum Improvement Proposals 20 (2015).

[76] GavinWood et al. 2014. Ethereum: A secure decentralised generalised transaction
ledger. Ethereum project yellow paper 151, 2014 (2014), 1–32.

[77] Pieter Wuille. 2012. Hierarchical Deterministic Wallets. Bitcoin Improvement Pro-
posal 32 (2012). https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki

[78] Pieter Wuille, Jonas Nick, and Anthony Towns. 2020. Taproot: SegWit version 1
spending rules. Bitcoin Improvement Proposal 341 (2020). https://github.com/
bitcoin/bips/blob/master/bip-0341.mediawiki

[79] Yang Xiao, Ning Zhang, Wenjing Lou, and Y. Thomas Hou. 2020. A Survey of
Distributed Consensus Protocols for Blockchain Networks. IEEE Communications
Surveys Tutorials 22, 2 (2020), 1432–1465. https://doi.org/10.1109/COMST.2020.
2969706

[80] Congcong Ye, Guoqiang Li, Hongming Cai, Yonggen Gu, and Akira Fukuda. 2018.
Analysis of Security in Blockchain: Case Study in 51%-Attack Detecting. In 2018
5th International Conference on Dependable Systems and Their Applications (DSA).
15–24. https://doi.org/10.1109/DSA.2018.00015

[81] Maofan Yin, Dahlia Malkhi, Michael K. Reiter, Guy Golan Gueta, and Ittai Abra-
ham. 2019. HotStuff: BFT Consensus with Linearity and Responsiveness. In Pro-
ceedings of the 2019 ACM Symposium on Principles of Distributed Computing (PODC
’19). ACM, New York, NY, USA, 347–356. https://doi.org/10.1145/3293611.3331591

14

https://doi.org/10.1145/3132747.3132757
https://doi.org/10.1109/DSN.2019.00063
https://www.peercoin.net/whitepapers/peercoin-paper.pdf
https://www.peercoin.net/whitepapers/peercoin-paper.pdf
https://doi.org/10.1145/1658357.1658358
https://doi.org/10.1145/1658357.1658358
https://ia.cr/2020/019
https://doi.org/10.1145/3243734.3243788
https://doi.org/10.1145/3243734.3243788
http://bitcoin.org/bitcoin.pdf
https://blockstream.com/assets/downloads/pdf/liquid-whitepaper.pdf
https://blockstream.com/assets/downloads/pdf/liquid-whitepaper.pdf
https://doi.org/10.1109/ICIICT1.2019.8741353
https://www.federalreserve.gov/publications/money-and-payments-discussion-paper.htm
https://www.federalreserve.gov/publications/money-and-payments-discussion-paper.htm
https://doi.org/10.1109/COMST.2020.2975999
https://doi.org/10.1109/ICACCS.2017.8014672
https://doi.org/10.1145/359168.359176
https://developers.diem.com/papers/diem-consensus-state-machine-replication-in-the-diem-blockchain/2021-08-17.pdf
https://developers.diem.com/papers/diem-consensus-state-machine-replication-in-the-diem-blockchain/2021-08-17.pdf
https://doi.org/10.1109/SP40000.2020.00059
https://doi.org/10.1109/SRDS.2009.36
https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0341.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0341.mediawiki
https://doi.org/10.1109/COMST.2020.2969706
https://doi.org/10.1109/COMST.2020.2969706
https://doi.org/10.1109/DSA.2018.00015
https://doi.org/10.1145/3293611.3331591

	Abstract
	1 Introduction
	1.1 Consensus in Bitcoin
	1.2 All of Bitcoin but PoW
	1.3 Public strengths, in private
	1.4 Solution overview
	1.5 Scope of this work
	1.6 Structure and contribution of this paper

	2 System Model and Requirements
	2.1 High-level architecture
	2.2 Requirements
	2.3 Optional requirements

	3 Amending the Bitcoin protocol
	4 Ordering blocks with PBFT
	4.1 PBFT in a nutshell
	4.2 Quorum size
	4.3 The client
	4.4 Normal operation (no faulty primary)
	4.5 Checkpoints
	4.6 View change
	4.7 Realized properties of the mining network

	5 Certified Byzantine Consensus
	5.1 The FROST Signature Scheme
	5.2 FROSTing PBFT

	6 Related work
	6.1 Permissioned DLTs
	6.2 Byzantine Fault Tolerance
	6.3 Threshold signatures

	7 Future work
	8 Conclusions
	References

