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Abstract

Calibrating agent-based models (ABMs) in economics and
finance typically involves a derivative-free search in a very
large parameter space. In this work, we benchmark a number
of search methods in the calibration of a well-known macroe-
conomic ABM on real data, and further assess the perfor-
mance of ”mixed strategies” made by combining different
methods. We find that methods based on random-forest sur-
rogates are particularly efficient, and that combining search
methods generally increases performance since the biases of
any single method are mitigated. Moving from these obser-
vations, we propose a reinforcement learning (RL) scheme to
automatically select and combine search methods on-the-fly
during a calibration run. The RL agent keeps exploiting a spe-
cific method only as long as this keeps performing well, but
explores new strategies when the specific method reaches a
performance plateau. The resulting RL search scheme outper-
forms any other method or method combination tested, and
does not rely on any prior information or trial and error pro-
cedure.

1 Introduction and literature review
The last decades have witnessed a consistent growth of the
reach and scope of agent-based models (ABMs) in eco-
nomics and finance, certainly also as a consequence of con-
tinuing improvements in the computer hardware and soft-
ware that form the foundation over which ABMs are de-
signed and used (Axtell and Farmer 2022). ABMs have also
become mature enough that they have seen adoption and us-
age within central banks and other financial institutions for
specific tasks (Turrell 2016; Plassard et al. 2020). A partic-
ularly noteworthy application domain is the modelling of
the housing market, pioneered by Bank of England (Bap-
tista et al. 2016) and later studied by many other central
banks (Cokayne 2019; Catapano et al. 2021; Carro 2022;
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Méro et al. 2022), and the macroeconomic model proposed
in (Poledna et al. 2023) and recently adopted by Bank of
Canada (Hommes et al. 2022). Other successful applications
can be found in the modelling of financial stability (Book-
staber, Paddrik, and Tivnan 2014; Covi, Montagna, and Torri
2020), or of the banking sector (Chan-Lau 2017).

In spite of these success stories, ABMs are still predom-
inantly an object of academic interest, and occupy a mi-
nor role in policy making. One fundamental reason behind
ABMs’ limited adoption is the overwhelming flexibility of
such a modelling tool which, if handled incorrectly, can lead
to widely different models of the same phenomenon and
consequently to a narrow predictive power.

Rigorous calibration of ABMs via large amounts of real
data is a promising path to address the problem of ABM
flexibility by appropriately restricting it in data-driven and
systematic manner (Axtell and Farmer 2022). In fact, ABM
calibration has a long history (Fagiolo, Moneta, and Win-
drum 2007), but interest in ABM calibration has grown par-
ticularly in recent times of ever-increasing data abundance.
Historically, the problem has been approached mostly via
the ‘method of simulated moments’ (Gilli and Winker 2003;
Franke 2009; Grazzini and Richiardi 2015), which involves
minimising a measure of distance between summary statis-
tics of real and simulated time series, while more recently,
other approaches based on maximum likelihood or Bayesian
statistics have been proposed and successfully tested (Grazz-
ini, Richiardi, and Tsionas 2017; Platt 2021; Farmer et al.
2022).

A common challenge of all calibration frameworks is the
need of efficiently searching for optimal parameter combi-
nations in high-dimensional spaces, a problem made particu-
larly arduous by the high computational cost of state-of-the-
art ABM simulations. This is why the use of several heuris-
tic search methods has been proposed in the ABM litera-
ture. Specifically, in (Lamperti, Roventini, and Sani 2018),
building on the work of (Conti and O’Hagan 2010), the au-
thors propose the use of machine surrogates, specifically in
the form of XG-boost regressors, to suggest promising pa-
rameter combinations by interpolating the results of previ-
ously computed ABM simulations. In (Angione, Silverman,
and Yaneske 2022), the authors expand on this idea and
test the ability of several machine learning surrogate algo-
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rithms such as Gaussian processes, random forests and sup-
port vector machines, to reproduce ABM simulation data. In
(Platt 2020) the author instead proposes the use of particle
swarm samplers (Kaveh 2017; Stonedahl 2011), as well as
the search heuristic of (Knysh and Korkolis 2016).

In this work, we take a different view of the problem and
test the performance of existing search strategies, on a com-
mon calibration task, and propose simple methods to com-
bine them in mixed strategies to drastically boost calibra-
tion performance. We test our methods one of the most well-
known and studied macroeconomic ABMs (Delli Gatti et al.
2011a; Assenza, Delli Gatti, and Grazzini 2015; Dawid and
Delli Gatti 2018), often referred to as the CATS (“Complex
Adaptive Trivial System”) model. Our contributions are as
follows:

• We verify that the macroeconomic ABM considered can
be efficiently calibrated to reproduce a variety of real
time series.

• We find that methods based on random forest machine
learning surrogates are particularly effective searchers in
the highly non-convex and discretely-changing loss func-
tion induced by ABMs.

• We find that combining together different search meth-
ods almost always provides better overall performance,
and propose this as a convenient heuristic to apply in the
ABM calibration practice.

• We introduce a simple reinforcement-learning technique
to automatically aggregate any number of search meth-
ods in a single mixed strategy, and demonstrate the supe-
rior performance of this approach with respect to naive
aggregation strategies.

In Section 2 we overview the CATS model, in Section 3
we describe the calibration technique considered here and
the search methods that we employ individually and in com-
bination, in Section 4 we describe our benchmarking exper-
iments and the results obtained, in Section 5 we describe
the reinforcement learning scheme we proposed to automat-
ically aggregate existing methods, and demonstrate its per-
formance, in Section 6 we verify that the calibrated model
approximately reproduces the target real data, and in Sec-
tion 7 we conclude.

In the interest of reproducibility, the code and the data
used to generate the key results of this work are available to
download as supplementary material of the paper.

2 Model description
The CATS model (Delli Gatti et al. 2011b; Assenza, Delli
Gatti, and Grazzini 2015) consists of four classes of inter-
acting agents: households, final-goods producing firms (C-
firms), capital producing firms (K-firms) and banks. Fig-
ure 1a illustrates these classes of agents and the main mech-
anisms of interactions among them.

2.1 Household
The household sector consists of workers and capitalists.
Each worker supplies one unit of labour inelastically. An
unemployed worker randomly selects Ze firms and takes

the job at the firm with a vacant position on a first come
first serve basis. Each worker receives wage w until laid off.
Firms are owned by capitalists and they receive dividends
and hold equity at those firms but do not work. When a firm
becomes bankrupt, it is replaced by a new entrant firm and
a capitalist provides equity. All of the households consume
final goods and therefore participate in search and matching
in the consumption market. They determine their consump-
tion budget according to

Cc,t = Y c,t + χDc,t, (1)

where Y c,t is the permanent income of the consumer c at
time t, Dc,t is the financial wealth deposited at a bank and
χ ∈ (0, 1) is the fraction of the bank deposit used for con-
sumption. Unlike the standard macroeconomic models, per-
manent income is the weighted average of current and past
incomes with exponentially decaying weights and follows

Y c,t = ξY c,t−1 + (1− ξ)Yc,t (2)

where Yc,t is the actual income of period t and ξ ∈ (0, 1) is
the memory parameter of the consumer.
Each consumer visits a set of randomly selected firms and
sorts their prices from lowest to highest (this gives rise to
implicit negative relative price elasticity of demand). If the
consumption budget is not exhausted on the first firm, the
consumer goes to the second firm in the order. If consump-
tion budget is not exhausted after all buying opportunities,
the consumer involuntarily saves the rest.

2.2 Price and quantity setting
One of the distinctive features of the CATS model is its
expectation formation of the future demand and price set-
ting of the firms, summarised in Figure 1b and detailed
in this section. C-firms and K-firms decide the quantity
and price in a similar fashion. The only difference between
these two is that C-goods are non-storable, unlike K-goods.
Firms start off with the pair (Pi,t, Yi,t) and notice the ac-
tual sale Qi,t = min(Yi,t, Y

d
i,t) as demanded quantity can

differ from produced quantity. Therefore, firms base their
decision on two signals: their relative price and actual sale.
Now any decision can be mapped to one of the quadrants
of the (Pi,t, Yi,t) space depending on the signal. Hence firm
i ∈ {C-firms,K-firms} update their next period desired out-
put as

Y ∗i,t+1 =

{
Yi,t + ρ(−∆i,t)− 1i∈KY ki,t+1 if ∆i,t ≤ 0 Pi,t ≥ Pt (‘c’)
Yi,t − ρ∆i,t1i∈KY

k
i,t+1 if ∆i,t > 0 Pi,t < Pt (‘d’)

(3)
where ∆i,t = Yi,t − Y di,t , ρ ∈ (0, 1) and Y ki,t+1 =

(1 − δk)(Y ki,t + ∆i,t) i.e., the inventory dynamics of cap-
ital firms. Here δk ∈ (0, 1) is the depreciation parameter of
the inventories.

In short, when demand is higher than the current period’s
production, increase the next period’s production and vice-
versa. Notice that in the four possible signal scenarios de-
picted in the four quadrants of Figure 1b, firms can only
change either prices or adjust their quantities. Equation (3)
describes quadrants ‘c’ and ‘d’ of the figure, for the price
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Figure 1: The CATS model. (a) An illustration of the agent classes of the model and their interactions. Agent classes are
represented in green ovals, interaction types are specified in rectangles, and markets are specified in yellow rectangles. The
directions of the arrows indicate the flow of the specific good e.g., consumption-goods are acquired by households from C-
firms, while labour is acquired by firms from households. (b) An illustration of the firms’ decisions on the price-quantity space.
Prices Pi,t and quantities Yi,t of goods are updated following the 4 solid black arrows (representing Equations (4) and (3)), and
not the dashed black arrows. The dashed blue line is the minimum price they can charge, corresponding to the average cost
(AC) for production.

setting in the other two scenarios (quadrants ‘a’ and ‘b’ of
the figure) firms follow the updating rule

Pi,t+1 =

{
Pi,t(1 + ηi,t+1) if ∆i,t ≤ 0 Pi,t < Pt (‘a’)
Pi,t(1− ηi,t+1) if ∆i,t > 0 Pi,t ≥ Pt (‘b’)

(4)
where ηi,t+1 ∼ U(0, η̄). So when there is excess demand,
firms increase their price if it is lower than average, since
consumers will be willing to pay a higher price and vice-
versa. Firms also have average costs (AC) and can not set
the price below the level of AC. C-firms produce taking the
output of the K-firms as input and therefore participate in
the K-goods market using search and match exactly like in
consumption goods market.

2.3 Production, investment and employment
Means of production in the C-firms are capital Ki,t and
labour Ni,t. The production function follows Leontief tech-
nology i.e., Ŷi,t = min (αNi,t, κKi,t) where α and κ are
labor and capital productivity respectively. If the labour is
abundant and capital is not fully utilized then the output be-
comes Yi,t = ωi,tŶi,t = ωi,tκKi,t where ωi,t ∈ (0, 1) is the
capacity utilization rate. Therefore the required labor for the
production is Ni,t = (κ/α)ωi,tKi,t. Capital is accumulated
by the firms and follows

Ki,t+1 = (1− δωi,t)Ki,t + Ii,t (5)

where only utilized capital depreciates and Ii,t is the invest-
ment.
Investment opportunities of the firms are infrequent (one in
every 1/γ periods where γ is the fraction of firms adjusting
capital) and capital is fixed in the short run. This gives rise

to sticky and durable capital, as firms take investment deci-
sions in an uncertain environment before the consumption
market opens and this anchors decisions on average lifetime
capital stock. The average lifetime capital stock evolves as

Ki,t−1 = νKi,t−2 + (1− ν)ωi,t−1Ki,t−1 (6)

where ν ∈ (0, 1).
Firms decide on investment in two parts. Firstly, they make
up for the worn-out capital keeping in the mind the future
opportunities of capital adjustment i.e Iri,t = δ

γKi,t−1. Sec-
ondly, they target the desired long-term rate of capital uti-
lization ω. Therefore, the total investment of the firm be-
comes

Ii,t =

(
1

ω
+
δ

γ

)
Ki,t−1 −Ki,t (7)

and the capital stock evolves as:

Ki,t+1 =

(
1

ω
+
δ

γ

)
Ki,t−1 − δωi,tKi,t (8)

If the required capital for the desired level of production is
lower than the available capital stock, the firm uses a frac-
tion of the stock. If the required capital is higher than the
available capital stock, the firm fully utilizes the stock but
the level of production is not reached. Following these rules,
we get the required number of workers as

N∗i,t+1 = min
(κ
α
K∗i,t+1,

κ

α
Ki,t+1

)
, (9)

where K∗i,t+1 is the required capital for desired production
level and Ki,t+1 is the available capital stock.
After deciding on the required number of workers to match
the desired level of production, firms post vacancies as fol-
lows

νi,t+1 = max
(
N∗i,t+1 −Ni,t, 0

)
. (10)



K-firms produce only using labour input from the workers
and use linear technology Yj,t = αNj,t. Hence labour re-
quirement of the firm isNj,t/α. To make up for the required
workers, firms post vacancies and compete with C-firms in
the labour market for hiring.

2.4 Credits and banks
Each firm takes loans from the bank to fund its produc-
tion when internal funding is in short supply. For C-firms
there are typically two costs, the wage of the workers and
the funding for investment whereas K-firms only acquire the
cost of wage. Hence the required loans by the firms are

Fi,t = max (wNi,t − 1i∈C−firmsPk,t−1Ii,tDi,t−1, 0)
(11)

There is only one bank in the economy. It accepts all de-
posits from agents and does not provide deposit interests.
Bank evaluates the financial soundness of the firms using
the entire past data of the firm’s balance sheet. For each firm
f , it computes the following leverage ratio

λf,t =
Lf,t−1 + Ff,t

Ef,t−1 + Lf,t−1 + Ff,t
. (12)

The bank then estimates a logistic regression of the individ-
ual bankruptcy probability φf for each firm as φf = f(λf ).
Considering that the firms are paying θ fraction of their loan
back each period, the bank sets the interest rates of loan for
each bank as

rf,t = µ

{
1 + r

θ

Φ(θ, Tf,t)
− θ
}
, (13)

where Tf,t = 1/φf,t i.e., number of periods after which firm
defaults. Optimization of the lending is done by considering
a maximum admissible loss for the bank as a fraction of the
bank’s equity. If ∆Lf,t is the new extended loan to the firm
then it follows that

φf (∆Lf,t + Lf,t−1) ≤ ζEbt , (14)

and the maximum admissible loan for a firm f becomes

F f,t =
ζEbt − φfLf,t−1

φf
. (15)

In summary, if the loan requirement of the firm is less than
the maximum admissible loan for that firm, the firm gets the
full funding. On the other hand, if the loan requirement is
higher than the maximum admissible loan, the bank lends
only up to the limit and the firm has to cut down its hiring,
production etc.

3 Calibration description
The calibration method we consider is composed of three
main steps. First, a search method (from now on also called
a sampler) suggests a set of parameters to explore, then a
number of simulations are performed for each selected pa-
rameter, and finally a loss function is evaluated to measure
the goodness of fit of the simulations with respect to the real
time series. Iterating these three steps allows finding param-
eters corresponding to progressively lower loss values, and

the parameter corresponding to the lowest loss value can be
considered optimal.

We follow the method of moments paradigm (Franke
2009; Chen and Lux 2018) and use the following loss func-
tion (often called distance in the ABM literature) for all cal-
ibrations. This takes the form

L =
1

D

D∑
d=1

gT
dWdgd, (16)

where gd is the vector of difference between the real and
the simulated moments of the one-dimensional time series
d, and D is the total number of dimensions in the multi-
dimensional time series considered. Different choices for the
weighting matrices Wd have been proposed in the literature
(Franke 2009; Franke and Westerhoff 2012). In this work
we take the Wd matrices to be diagonal matrices with el-
ements (Wd)ii inversely proportional to the square of the
real i-th moment of the one-dimensional time series d. This
choice guarantees that the same weight is given to all mo-
ments considered, independently of the different scales or
units of measure that the different moments might have. In
essence, the loss function written in this way provides an
estimate of the relative squared error between real and sim-
ulated moments.

Since we use a common loss function for all calibrations,
the only difference between the calibration runs considered
here is the choice of search method. We consider the fol-
lowing five search methods, all of which are implemented in
Black-it (Benedetti et al. 2022), an open source library for
ABM calibration 1

Halton sampler (H). This sampler suggests points ac-
cording to the Halton series (Halton 1964; Kocis and Whiten
1997). The Halton series is a low-discrepancy series provid-
ing a quasi-random sampling that guarantees an evenly dis-
tributed coverage of the parameter space. As the method is
very similar to a purely random search, we use it as a base-
line for the more advanced search strategies analysed.

Random forest sampler (RF). This sampler is a type of
machine learning surrogate sampler. It interpolates the previ-
ously computed loss values using a random forest classifier
(Bajer, Pitra, and Holeňa 2015), and it then proposes param-
eters in the vicinity of the lowest values of the interpolated
loss surface. We use a random forest classifier with 500 in-
dependent estimators (“trees”) and use 10 classes chosen as
the 10 quantiles of the distribution of evaluated losses.

XG-boost sampler (XB). This sampler is a machine
learning surrogate sampler that interpolates loss values us-
ing an XG-Boost regression (Chen and Guestrin 2016), as
proposed in (Lamperti, Roventini, and Sani 2018). We use
a learning rate of 0.1, a maximum tree depth of 5, and 10
estimators.

Gaussian process sampler (GP). This sampler is a ma-
chine learning surrogate sampler that interpolates loss val-
ues using a Gaussian process regression (Conti and O’Hagan

1https://github.com/bancaditalia/black-it

https://github.com/bancaditalia/black-it


Param. Description Range
ξ Memory parameter in consumption 0.5-1
χ Wealth parameter in consumption 0-0.5
ρ Quantity adjustment 0-1
η̄ Price adjustment 0-1
µ Bank’s gross mark-up 1-1.5
φ Bank’s leverage 0-0.01
δk Inventories depreciation rate 0-0.5
γ Fraction of investing C-firms 0-0.5
θ Rate of debt reimbursement 0-0.1
ν Memory parameter in investment 0-1
tw Tax rate 0-0.4

Table 1: Parameter descriptions and their corresponding cal-
ibration ranges.

2010; Rasmussen 2004). We use a Matérn covariance func-
tion with ν = 5/2 and with the lengthscale optimised at
every iteration via maximum marginal likelihood.

Best batch sampler (BB). This sampler is a very essen-
tial type of genetic algorithm (Stonedahl 2011) that takes
the parameters corresponding to the current lowest loss val-
ues and perturbs them slightly in a purely random fashion to
suggest new parameter values to explore. The random per-
turbation is specifically obtained by first selecting a random
subset of dimensions, and then changing the parameter value
along those dimensions uniformly but within a short range
(plus/minus 0.006 in our case).

4 Benchmarking experiments
4.1 Experiments preparation
Similarly to (Delli Gatti and Grazzini 2020), we calibrate
the model using the following 5 historical time series, rep-
resenting the US economy from 1948 to 2019, downloaded
from the FRED database (McCracken and Ng 2016): total
output, personal consumption, gross private investment (all
in real terms), the implicit price deflator and the civilian un-
employment. To make simulated and observed data compa-
rable, we remove the trend component from the total output,
consumption and investment using an HP filter (Ravn and
Uhlig 2002); and we use simulated and observed price de-
flator to compute de-meaned inflation rates.

In Table 1 we list the 11 parameters considered for cali-
bration and the specified ranges of variation.

4.2 Experiments performed.
Using the four samplers described in the previous section,
we build 11 search methods as the 5 samplers taken indi-
vidually, as well as the 6 combinations resulting from taking
two different non-baseline samplers.

For each search method, we perform 3 independent cal-
ibration runs. Each calibration run consists of 3600 model
evaluations, and for each parameter 5 independent simula-
tions are performed to reduce the statistical variance of the
loss estimate. Each simulated series consists of 800 time-
steps generated by running the model for 1100 time steps
and discarding the first 300. This makes up a total of 540000

simulations and more than 50 days of CPU time, which we
were able to compress in less than two days by leveraging
parallel computing both within and between calibrations.

4.3 Results and discussion
Figure 2 reports the cumulative minimum loss achieved by
the different sampling strategies as a function of the number
of model evaluations performed. The lines and the shaded
areas indicate averages and standard errors over the 3 real-
isations of the experiment. Single samplers are reported in
the left graph, while couples of samplers are reported in the
middle graph as well as –zoomed– in the right graph. The
table at the bottom of the graphs reports the minimum loss
achieved by the different methods.

Single methods. When samplers are taken in isolation, the
random forest sampler (RF) clearly outperforms all other
methods, the XG-boost sampler (XB) is the second best per-
forming and the Gaussian process sampler (GP) is substan-
tially worse than the other two machine learning surrogate
samplers. The low performance of the GP sampler can be as-
cribed to the smoothness and regularity assumptions inher-
ent in Gaussian process regression models, assumptions that
are not present in random-forest or XG-boost models, and
not suited to describe the roughed and complex loss land-
scape of ABM calibrations. The best batch sampler (BB)
performs very poorly in isolation, and underperforms even in
comparison with the baseline H sampler. This is not entirely
surprising, since the BB sampler can only propose small per-
turbations around current loss minima and can thus easily
remain stuck in one of the many local minima of the highly
non-convex landscape typical of ABMs loss functions.

Couples of methods. All methods, not just the poorly per-
forming BB sampler, possess intrinsic sampling biases that
in the long run can hinder their performances and make them
converge to sub-optimal solutions. We find that combining
different methods in mixed strategies can strongly mitigate
such biases and improve overall performance. The effect
can be observed in the second and third panel of Figure 2,
by noticing that couples of methods, with the only excep-
tion of the ‘XB,GP’ combination, always perform on par
or better than the best single samplers (RF and XB). Inter-
estingly, the best overall performances are achieved by cou-
pling one machine learning surrogate sampler with the ge-
netic BB sampler. In light of the above discussion, we note
that machine learning surrogate samplers and the BB sam-
pler work in very different ways, and hence their combina-
tion can strongly diminish the respective sampling biases,
while since machine learning surrogates all work in similar
ways, their combination does not yield to comparable im-
provements. The RF,BB and the XB,BB combinations are
particularly effective and achieve the lowest loss values.

To summarise, our results show that the RF and XB sam-
plers are particularly well suited to efficiently search in the
parameter space of ABMs. The success of the RF and XB
samplers can be ascribed to the ability to correctly approxi-
mate high dimensional and possibly discontinuous functions
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Method H RF XB GP BB RF,XB RF,GP RF,BB XB,GP XB,BB GP,BB
Mean 12.83 9.803 10.24 11.96 16.87 9.88 9.861 9.07 10.89 9.27 9.83

Std. Err. 0.73 0.094 0.29 0.51 0.59 0.16 0.075 0.24 0.27 0.31 0.26

Figure 2: Top graphs: Loss as a function of the number of model evaluations for the single methods (left), and for couples of
methods (middle and right). Bottom table: Means and standard errors of the lowest losses achieved by the different strategies.
Note that these results are directly comparable with those shown in Figure 3 and discussed in the next section, as both x and y
axes have identical ranges.

with no regularities. However, the performance of the RF
and XB samplers can be significantly improved if they are
used in combination with the BB sampler.

The results presented so far can already offer useful
guidance for researchers interested in calibrating medium
and large scales ABMs, as they provide an easy recipe to
boost calibration efficiency by simple alternation of existing
search methods. In the next section, we move a step forward
and consider the combination of multiple methods in more
general terms, without limiting ourselves to the simplest sce-
nario of a “round-robin” selection.

5 Reinforcement learning experiments
The results of the benchmarks presented in Section 4 show
that the combination of different types of sampling meth-
ods can be beneficial for the calibration process even when
we naively alternate the available sampling methods during
the course of a calibration. This suggests that the investiga-
tion of different –and more flexible– scheduling policies of
search methods could bring to even more efficient calibra-
tions.

In particular, it is desirable that the chosen scheduling
policy shows some form of adaptivity, i.e. that is able to
choose the sampling method with more chances to sample
a good parameter vector, taking into account the progress of
the calibration process. To achieve this goal, we frame the
ABM calibration problem as a reinforcement learning (RL)
problem where the decision-maker (the agent) has to find a

good policy such that it chooses the most promising search
method, where “promising” is related to the chances of sam-
pling a parameter that improves the value of the loss. The
decision-maker receives feedback for its choice in the form
of a reward signal computed from the sampled loss func-
tion values. This is what makes the scheduling policy adap-
tive: search methods that more often provide loss improve-
ments are more rewarding from the decision-maker perspec-
tive, and they have more chances of being chosen in the
next calibration step; on the other hand, whenever a search
method does not show to be rewarding anymore, then the
decision-maker can detect this and switch the preference to
another search method. Borrowing terminology from con-
trol theory (Dorf and Bishop 2008), fixed scheduling poli-
cies, such as the naive samplers’ combinations explored in
the previous section, are open-loop, i.e. they do not change
regardless of how a search method is performing; instead,
RL-based scheduling policies are closed-loop, because they
receive and process the feedback coming from the calibra-
tion process, possibly reacting to such feedback by changing
the preferred sampling method.

Specifically, we frame the calibration process as a multi-
armed bandit (MAB) problem (Katehakis and Veinott Jr
1987; Weber 1992; Auer, Cesa-Bianchi, and Fischer 2002;
Berry and Fristedt 1985; Gittins, Glazebrook, and Weber
2011; Lattimore and Szepesvári 2020). This is a classic
reinforcement learning problem that exemplifies the ex-
ploration–exploitation trade-off dilemma (Sutton and Barto



2018). The challenge for the agent is to simultaneously at-
tempt to acquire new knowledge by “exploring” different ac-
tions and optimise their decisions based on existing knowl-
edge by “exploiting” actions that have been estimated to be
rewarding. We define the different sampling methods as the
actions available for the agent, and loss improvements as the
reward signals. More formally, we define the reward at time
t as the fractional improvement achieved over the previous
best loss

Rt = max{0, Lbest,t−1 − Lt
Lbest,t−1

} (17)

where Lt is the loss obtained for the simulations sampled
at time t, and Lbest,t−1 is the best loss sampled so far up
to time t − 1. Note that Rt is a random variable, because
Lt depends on the simulated time series outputted by the
(possibly stochastic) ABM, and the (possibly stochastically)
chosen parameter vector. As in most of the MAB problems,
the goal for the agent is to maximize the cumulative sum of
rewards

SN =

N∑
t=1

Rt, (18)

where N is the number of calibration steps.
Differently from the usual MAB setting, the reward prob-

ability distributions associated to each available sampler are
obviously non-stationary, and in fact they change drastically
during the course of the calibration. As an example, con-
sider that at end of a calibration all methods –even the best
ones– stop providing any improvement in the loss, and hence
the reward distributions become progressively more peaked
around zero. Non-stationarity is the most general assump-
tion one can make over the behaviour of reward probability
distributions in MABs (Auer et al. 2002) and, in our case, the
non-stationarity assumption is required from of the lack of
knowledge on both the ABM and the samplers’ behaviours.

The MAB is a very simple framework for RL problems,
that are more generally modelled as Markov Decision Pro-
cesses (MDPs) (Sutton and Barto 2018). However, their sim-
plicity is precisely what makes MAB better suited for our
context than other approaches. Indeed, as MAB algorithms
focus on finding the best action at each step rather than learn-
ing the entire environment, they are much more sample effi-
cient. In the ABM calibration context, simulations are typi-
cally very expensive, and consequently the sample efficiency
of the learning method is of paramount importance.

In the following, we test our MAB framework in two ex-
periments. First, in the offline-learning experiments, we let
the agent learn from the previously executed calibrations of
Section 4. Then, in the online-learning experiments, we let
the agent interact with the environment and optimise its pol-
icy on-the-fly during each calibration.

5.1 Offline experiments
In this section, we train a MAB agent over past calibration
histories. More precisely, we take the single methods and
couples of methods calibrations of Section 4, and process
them as if they were observed by a MAB algorithm. This
approach gives us an estimate of the expected gain of each

Sampler \ Context sing. samp. glob. high Lbest,t low Lbest,t

RF 0.25 0.27 1.3 0.052
XB 0.23 0.23 0.61 0.033
GP 0.21 0.17 0.26 0.068
BB 0.11 0.23 0.28 0.18
H 0.20 0.20 0.24 N.A.

Table 2: The estimated Q functions for the different search
methods and under different contexts. (sing. samp/) uses
only single sample calibrations, (glob.) uses all calibrations,
(highLbest,t) uses all calibration but only actions taken when
the loss is above the median loss, and (low Lbest,t) uses all
calibration but only actions taken when the loss is below the
median loss. Results are reported on a scale of 10−3.

sampler, and therefore information about the effectiveness
of the sampler methods on the specific calibration task.

In the context of MAB solutions, action-value methods
are methods for estimating the values of actions and for us-
ing the estimates to make action selection decisions (Sutton
and Barto 2018). Let Q(a) be the value of action a or, in our
context, the value of using a specific search method during
a calibration. One natural way to estimate such values is by
averaging the rewards actually received

Q(a) =

N∑
t=1

Rt · 1At=a

N∑
t=1

1At=a

, (19)

where At is the action chosen at step t. This approach is
often called the sample-average method (Sutton and Barto
2018).

The first two columns of Table 2 provide the results of this
analysis when only the single sampler calibrations are con-
sidered (“sing. samp.” column) and when all calibrations are
considered (“glob.” column). Not surprisingly, the RF sam-
pler reaches the highest Q value using both datasets, and
the results of the “sing. samp.” column replicate the hierar-
chy of samplers of the first panel of Figure 2. Interestingly,
the value of the BB sampler dramatically increases when
the combined dataset is used, confirming the analysis car-
ried forward in the last section on the effectiveness of using
the BB sampler in combination with a machine learning sur-
rogate sampler.

The third and fourth columns of Table 2 offer additional
insight. In these columns, we restrict the value function es-
timation of Eq. (19) to actions performed in one of two dif-
ferent ‘states’, characterised by the best loss Lbest,t being ei-
ther above the median (“high Lbest,t” column) or below the
median (“low Lbest,t” column). Models of this kind, where
the actions of a MAB agent depend on one or more states
(in this case high/low loss value) are known as contextual
MABs (Langford and Zhang 2007; Lu, Pal, and Pal 2010;
Li et al. 2010).

The results clearly indicate that when the loss is high (typ-
ically at the beginning of the calibration) the optimal action
is the RF sampler, but when the loss is low (typically at the
end of the calibration) the optimal action becomes, by far,



0 1000 2000 3000

8

10

12

14

16

18

20

lo
ss

va
lu

e

RL scheme

ε =0.05 α =0.025

ε =0.05 α =0.05

ε =0.05 α =0.1

ε =0.1 α =0.025

ε =0.1 α =0.05

ε =0.1 α =0.1

0 1000 2000 3000

number of model evaluations

RL scheme (zoom)

ε\α 0.025 0.05 0.1
0.05 8.148± 0.089 7.94± 0.28 7.93± 0.12
0.1 8.00± 0.13 7.77± 0.23 7.77± 0.17

Figure 3: Top graphs: (left and middle) Loss as a function of the number of model evaluations for the RL scheme with different
choices of parameters, (right) the specific actions (samplers) selected by the RL scheme with parameters ε = 0.1 and α = 0.1
during the 900 epochs of a calibration for each of the 3 independent runs, to be read from left to right, from top to bottom, note
that each epoch provides 4 model evaluations. Bottom table: Means and standard errors of the lowest losses achieved by the RL
scheme. These results can be compared directly with those of Figure 2 as they have identical ranges on both x and the y axes.

the BB sampler. The BB sampler proposes small perturba-
tions around low-loss parameter combinations, and hence it
can be expected to be particularly effective when the cali-
bration has already reached a good minimum, which can be
further explored with this method.

The analysis performed so far would suggest the design
of a mixed search scheme that exploits a machine learning
surrogate sampler (say RF or XB) when the loss is suffi-
ciently high, before switching to the BB sampler towards the
end of the calibration. However, this specific strategy would
not be generally applicable as, on a new calibration task,
one would not know in advance the loss values that can be
achieved, and hence could not set any loss threshold on the
choice of sampler. In the following section, we show how
a MAB agent trained on-the-fly can solve this problem by
learning this behaviour, without any prior information, dur-
ing the course of a single calibration run.

5.2 Online experiments
In online learning schemes, the agent interacts with the en-
vironment through a specific policy π while simultaneously
optimising the policy. We propose the use of one of the most
well-known algorithms for online learning of MAB agents in
non-stationary environments: the ε-greedy policy with fixed
learning rate (Sutton and Barto 2018). In this framework, at
each step t, with large probability 1 − ε the agent performs

a ‘greedy’ action i.e., it selects the action a with the highest
value Q(a), and with small probability ε it selects a purely
random action. We can hence write down the ε-greedy MAB
policy as follows

πt =

{
argmaxa Qt(a) with probability 1− ε
random action with probability ε

. (20)

After the selected action a is performed, the agent receives
a reward Rt, and updates the value Qt(a) as

Qt+1(a) = αRt + (1− α)Qt(a), (21)

where α is referred to as the learning rate. Note that the
above update rule can be seen as an exponentially weighted
moving average of the rewards obtained through action a.
The exponential weighting guarantees that the current value
of the Q function is not substantially affected by rewards
received many steps earlier and, in turn, this allows the al-
gorithm to adapt to changes of the environment on-the-fly
during a calibration.

Figure 3 shows the results obtained when using the de-
scribed scheme with a set of possible actions given by the
tree samplers RF, XB and BB. The left and middle panels of
the figure can be directly compared with the graphs in Fig-
ure 2, as they have identical ranges on both x and y axes.
We see that the RL scheme proposed strongly outperforms
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any other method, or method combination, tested in the pre-
vious section. This happens for all values considered for the
parameters ε and α, with the best results –by a very narrow
margin– obtained with ε = α = 0.1.

The right panel of Figure 3 helps us build intuition around
the excellent performance of the RL scheme proposed. It de-
picts with different colours the different actions (samplers)
selected during the 3 RL calibration runs performed with
the best parameters ε = α = 0.1. At the beginning of the
calibration (say, the first two columns), the agent explores
the different strategies by alternating between the 3 sam-
plers and sometimes exploits a specific sampler with long
streaks of identical sampler choices. Towards the end of the
calibration (say, the last two columns), when the loss is low,
the agent instead more decisively exploits the BB sampler,
in agreement with the offline experiments described earlier
and summarised in Table 2.

In conclusion, we find that modelling the calibration pro-
cess as an online learning MAB problem, with actions being
given by different available search methods, allows to de-
tect the most promising search methods during the course of
a single calibration. This gives rise to a very efficient sam-
pling scheme, and represents a practical tool to intelligently
combine different search methods in the calibration of eco-
nomic ABMs.

The ε-greedy –fixed learning rate– scheme we use here is
a particularly simple and intuitive algorithm for MAB learn-
ing, but many other options have been suggested in the lit-

erature. In Appendix A we explore some of them for a sim-
plified calibration setting, and find no substantial improve-
ments in the calibration efficiency.

6 Validation
We here verify that the calibrated model is able to ap-
proximately reproduce the behaviour of the five variables
tracked in the real dataset. This can be immediately seen
by analysing Figure 4, in which the distribution and the
moments of the simulated series with the lowest loss are
compared with those computed for the real historical series.
In agreement with (Delli Gatti and Grazzini 2020), output,
consumption and investment are very well captured by the
CATS model, while stronger deviations can be observed in
inflation and unemployment rates. Also in agreement with
(Delli Gatti and Grazzini 2020) we find that, in general, the
CATS model can only partially account for the persistence
of the real time series. This is clear from the fact that the
simulated series have systematically lower values of virtu-
ally all autocorrelations considered (indices 5-9 and 14-18
in the second-row graphs).

7 Conclusions
In this work, we systematically compare the performance of
5 search strategies, taken in isolation and in combination,
on a method-of-moments calibration of a standard macroe-
conomic ABM. Our results show that calibration based on
machine learning surrogate samplers, of the kind proposed



in (Lamperti, Roventini, and Sani 2018) but using a random
forest algorithm for interpolation, provides superior perfor-
mance with respect to the other search methods. Our results
further show that coupling different search methods together
gives rise to search strategies that typically improve over
their constituents. The empirical efficacy of random forest
search methods and of combining different search methods
can be of practical help to researchers interested in cali-
brating and using medium and large-scale economic ABMs.
However, when combining different search methods a nat-
ural issue arises about which methods should be combined,
and in which way.

We provide a solution to this issue by framing the choice
of search methods as a multi-armed bandit problem, and
leveraging a well-known reinforcement learning scheme to
select the best method on-the-fly during the course of a sin-
gle calibration. The RL scheme proposed outperforms any
other method or method combination tested, and thus pro-
vides a practical tool for researchers interested in efficiently
calibrating ABMs.

In the future, it would be interesting to deepen the anal-
yses of the present study in two possible lines of research,
based on either extensions of the banchmarking experiments
of Section 4 or on further investigations into the RL scheme
of Section 5.

The benchmarking framework could be extended in sev-
eral dimensions. The first is the testing of other standard
search methods, such as particle swarm samplers or machine
learning samplers based on neural networks. The second is
the inclusion in the analysis of other measures of goodness
of fit, in addition to the method of moments, such as like-
lihood measures, Bayesian measures (Grazzini, Richiardi,
and Tsionas 2017; Farmer et al. 2022), or information the-
oretic measures (Lamperti 2018). The third is the addition
of other widely known macroeconomic ABMs (Dawid and
Delli Gatti 2018) to the analysis, such as the so called “K+S”
model (Dosi, Fagiolo, and Roventini 2010), or the recent
large-scale model of (Poledna et al. 2023). This would al-
low quantitative benchmarking not only of the calibration
strategies, but also of the different models when calibrated
on the same data. The final direction would involve appropri-
ately increasing the data on which the ABMs are calibrated
and tested, potentially with more variables and with more
national economies. In essence, while the present work is
an important step towards a systematic assessment calibra-
tion methods for medium and large-scale economic ABMs,
all of the above mentioned directions would surely represent
equally important steps towards an increasingly more data-
driven ABM development.

Given the excellent results achieved, the RL scheme pro-
posed also deserves further specific investigation. For exam-
ple, one could verify whether the RL search method devel-
oped here maintains its high performance also in the more
general setting of black-box function optimisation, perhaps
in other specific application domains that might have pecu-
liarities similar to the ABM calibration problem. One might
also try to extend the simple (yet effective) MAB frame-
work introduced here, by providing more ‘contextual’ in-
formation to the agent and hence attempting to represent

the ABM calibration problem either as an online contextual-
MAB problem, or directly as a partially-observable MDP
(Kaelbling, Littman, and Cassandra 1998). Potentially, the
problem could even be made suited for a pure MDP formu-
lation by feeding the entire history of the past sampled point
to the agent that needs to decide on the next search method,
or directly decide the specific points to sample as proposed
in (Chen et al. 2017).
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Figure 5: Tests of the RL calibration framework with different MAB learning algorithms. (a)-(c) Loss values as a function of the
number of model evaluations for different sampling strategies. Lines and shaded areas represent means and standard errors over
5 repetitions of each calibration run. (a) Baseline calibrations using the 4 different samplers individually. (b) RL calibrations
using 6 different MAB learning algorithms. (c) RL calibrations using the fixed-α, ε-greedy learning algorithm proposed in
the main text. (d) The specific ‘actions’ selected by the fixed-α, ε-greedy RL scheme with α = ε = 0.1 in the 5 calibration
repetitions.

A A comparison of multiple MAB learning
algorithms

In this appendix, we test the performance of a number of
variations of the RL framework introduced in the main text
obtained by coupling it with different learning algorithms for
multi-armed bandits (MABs). For reasons of computational
cost, the comparison is performed in a simplified setting,
and not on the calibration of the economic ABM analysed in
the rest of this work. The experimental setting consists of a
method of moments calibration of a 5-state Markov process
defined by a diagonal transition matrix, with 5 free parame-
ters to calibrate. The target time series is generated by simu-
lating the model for 5000 steps with diagonal transition pa-
rameters (0.1, 0.2, 0.3, 0.4, 0.5). We define the action space
of the MAB as the set of the 4 samplers (RF,XB,GP,BB).

Figure 5a shows the baseline calibrations obtained using
the 4 samplers individually, and we see that also for this
model the RF sampler outperforms all other search meth-
ods. Figure 5b shows several RL calibrations obtained by
couopling the RL framework described in the main text
with the following MAB learning algorithms, all avail-
able through the SMPyBandits package (Besson 2018): ‘kl-
UCB’ (Garivier and Cappé 2011), ‘Exp3’ (Bubeck, Cesa-
Bianchi et al. 2012), ‘Exp3.R’ (Allesiardo and Féraud 2015)

and ‘Exp3++’ (Seldin and Slivkins 2014), ‘Thompson’ and
‘Discounted Thompson’ sampling (Raj and Kalyani 2017).
All of the learning schemes achieve satisfactory results by
outperforming all sub-optimal samplers, and performing on
par with the RF sampler, but without any prior informa-
tion about the best sampler at the agent’s disposal. Fig-
ure 5c shows the RL calibration obtained using the ε-greedy
scheme proposed and tested also in the main text, for differ-
ent choices of ε and α. The ε-greedy scheme is also seen to
outperform all single samplers of Figure 5a except the opti-
mal one, and its performance is found to be very similar to
those of the other algorithms tested in Figure 5c.

Figure 5d depicts the actions selected during the 5 runs
pertaining to the ε-greedy calibration with ε = α = 0.1.
Some patterns are clearly visible, such as the preferential
choice of the BB sampler and the RF sampler, particularly
in the first half of the calibration where the loss decreases
rapidly before reaching a plateau.

B Data and code availability
In the interest of reproducibility, the code, the data and the
scripts used to generate the key results and the main graphs
of this work are available to download as supplementary ma-
terial of the paper.
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