
A Standard Grammar for Temporal Logics on
Finite Traces

This manuscript (permalink) was automatically generated from marcofavorito/tl-grammars@7d9a172 on June 7, 2021.

 https://arxiv.org/abs/2012.13638
 marcofavorito/tl-grammars

Document version: v0.2.0

WARNING: this version v0.2.0 is a draft. You are encouraged to email the contact author for any
comment or suggestion.

Authors

Marco Favorito
 0000-0001-9566-3576 · marcofavorito · https://marcofavorito.me

Department of Computer, Control and Management Engineering - Sapienza University of Rome

https://marcofavorito.github.io/tl-grammars/v/7d9a17267fbf525d9a6a1beb92a46f05cf652db6/
https://github.com/marcofavorito/tl-grammars/tree/7d9a17267fbf525d9a6a1beb92a46f05cf652db6
https://arxiv.org/abs/2012.13638
https://github.com/marcofavorito/tl-grammars
https://orcid.org/0000-0001-9566-3576
https://github.com/marcofavorito
https://marcofavorito.me/

Abstract

The heterogeneity of tools that support temporal logic formulae poses several challenges in terms of
interoperability. In particular, a standard syntax for temporal logic on �nite traces, despite similar to
the one for in�nite traces, is currently missing. This document proposes a standard grammar for
several temporal logic formalisms interpreted over �nite traces, like Linear Temporal Logic (LTLf),
Linear Dynamic Logic (LDLf), Pure-Past Linear Temporal Logic (PLTLf) and Pure-Past Linear Dynamic
Logic (PLDLf).

Introduction

This section explains the motivations behind the existence of this standard, states the goals of the
standard, describes the notation conventions used thorough the document, and lists the normative
references1.

Motivation

Temporal logics have a long history [1]. One of the most in�uential formalisms is Linear Temporal
Logic (LTL) [2], which has been applied for program speci�cation and veri�cation. The variant with
�nite trace semantics, LTLf, has been introduced in [3].

Linear Dynamic Logic (LDL) [4;] is the extension of LTL with regular expressions (RE). The idea behind
LDL is to have a formalism that merges the declarativeness and convenience of LTL, as expressive as
star-free RE, with the expressive power of RE. The variant over �nite traces, LDLf, has been proposed
in [3]. The syntax that naturally supports empty traces has been employed in [5] for LTLf/LDLf.

Recently, a �nite trace variant has been proposed also for the pure-past versions of LTLf and LDLf,
namely Pure-Past Linear Temporal Logic (PLTLf) and Pure-Past Linear Dynamic Logic (PLDLf) [6].

The topic has gained more and more attention both in academia and industry, also because such
logics have been considered compelling from a practical point of view. Among areas of Computer
Science and Arti�cial Intelligence, we encounter reactive synthesis [7], model checking [8], planning
with temporal goal [9], theory of Markov Decision Process with non-Markovian rewards [10], business
processes speci�cation [11], just to name a few. For what concerns industry applications, Intel
proposed the industrial linear time speci�cation language ForSpec [12], and the IEEE association
standardized the Property Speci�cation Language (PSL) [13]. Both standards witness the need of
speci�cations based on LTL and regular expressions. Also, the research community has proposed a
plethora of software tools and libraries to handle LTL and/or LDL formulas for a variety of purposes:
Spot [14,15], Owl [16], SPIN [17] for the in�nite-trace semantics, and Syft [18], Lisa [19],
FLLOAT [20,21], LTLf2DFA [22], Lydia [23] for the �nite trace setting. Another related work is

represented by TLSF v1.1 [24], although its focus is on a format for LTL synthesis problems.

All these tools and formats assume the input formulae to be written in a certain grammar.
Unfortunately, as often happens when dealing with parser implementations with lack of coordination,
the grammars to represent the formulae have some form of discrepancies; e.g. di�erent alternative
ways to denote boolean conjunctions or temporal operators, di�erent lexical rules to describe the
allowed atomic propositions or boolean constants, underspeci�cations on how to handle special
characters (linefeed, tab, newline, etc.), how to handle associativity of the operators.

Goals

To enhance interoperability between the aforementioned tools, this document proposes a standard
grammar for writing temporal logic formulae. In particular, we specify grammars for:

Linear Temporal Logic on �nite traces (LTLf)
Linear Dynamic Logic on �nite traces (LDLf)
Past Linear Temporal Logic on �nite traces (PLTLf)
Past Linear Dynamic Logic on �nite traces (PLDLf)

Note that, despite the syntax is very similar between the �nite trace and the in�nite trace variants, it is
not the same for some operators. For instance, in LTL there is no weak next operator, wheras in LTLf it
is the dual operator (under negation) of the next operator.

We would like this standard to be:

An open standard, fostering collaboration and contributions from the research community;
As much compliant as possible to existing and widely used tools;
Written by researchers, for researchers. In other words, this is not strictly tight to industrial needs;
for instance, we deliberately dropped the modeling of multiple clock and reset signals of ForSpec
and PSL , as these are constructs not relevant for domains outside formal veri�cation.
Tool-agnostic. Often, grammars are reported alongside software manuals and descriptions.
Instead, our aim is to propose a common denominator for all the grammars in use.

Notation

We describe the syntax in Extended Backus-Naur Form (EBNF) [25]. We follow the notation used for
the speci�cation of XML [26]; we discarded the EBNF standard version ISO/IEC 14977 [27], as it has
been often rejected by the community of those who write language speci�cations for a variety of
reasons [28,29].

Normative

We refer to [30] for requirement level key words. We also refer to Unicode standard [31,32] to de�ne
legal characters. For versioning this standard, we use SemVerDocs [33], inspired by SemVer [34].

Common de�nitions

In this section, we describe syntactic rules shared across every logic formalism.

Characters

Parsers MUST be able to accept sequence of characters (see de�nition below) which represent
temporal logic formulae. A character is an atomic unit of text as speci�ed by ISO/IEC 10646:2020 [31].
Legal characters are tab, carriage return, line feed, and the ASCII characters of Unicode and ISO/IEC
10646.

The range of characters to be supported is de�ned as:

Char ::= #x9 | #xA | #xD | [#x20-#x7e]

That is, the character tabulation, line feed, carriage return, and all the printable ASCII characters.

Boolean constants

We use true and false , to denote propositional booleans, and tt and ff , to denote logical
booleans. Note that true != tt , as true requires reading any symbol from the trace, e.g. in LTLf,
whereas tt is the tautology. Similarly, false != ff as false requires reading no symbol,
whereas ff is the contradiction. For false and ff the di�erence is a bit more blurred, but we
considered it better to keep them for symmetry with the positive case.

True ::= true
False ::= false
TT ::= tt
FF ::= ff
PropBooleans ::= TRUE | FALSE
LogicBooleans ::= TT | FF

Atomic Propositions

An atomic proposition is a string of characters. In particular, it can be:

any string of printable characters, excepted the quotation character used (see QuotedName)
any string of at least one character that starts with [a-z_] and continues with [a-z0-9_] , and
that is not a reserved keyword.

Unquoted strings with some upper-case characters are excluded. The reason is that some upper-case
characters (e.g. F and G) are reserved keywords for LTL and PLTL operators, and for a more intuitive
usage of the grammar it is preferred to forbid all of them instead of asking the user to remember the
relatively few exceptions. Moreover, the grammar should be able to support constructs like FGa ,
i.e. no necessary spaces between operators and symbols, for better conciseness.

The reserved keywords are:

true , false , tt , ff , the boolean constants;
last , end , first , start , the temporal logic abbreviations;
F , G , H , M , O , R , S , U , V , W , X , Y , the temporal operators.

NameStartChar ::= [a-z] | "_"
NameChar ::= NameStartChar | [0-9]
Name ::= NameStartChar (NameChar)*
QuotedName ::= ('"' [^"\n\t\r]* '"') | ("'" [^'\n\t\r]* "'")
Keywords ::= PropBooleans
 | LogicBooleans
 | "last" | "end" | "first" | "start"
 | "F" | "G" | "H" | "M" | "O" | "R" | "S" | "U" | "V"
 | "W" | "X" | "Y"
Atom ::= (Name | QuotedName) - Keywords

Boolean operators

The supported boolean operations are: negation, conjunction, disjunction, implication, equivalence
and exclusion.

Follows the list of characters used for each operator:

negation: ! , ~ ;
conjunction: & , && ;
disjunction: | , || ;
implication: -> , => ;
equivalence: <-> , <=> ;
exclusive disjunction: ^ ;

Non ::= "!" | "~"
And ::= "&" | "&&"
Or ::= "|" | "||"
Impl ::= "->" | "=>"
Equiv ::= "<->" | "<=>"
Xor ::= "^"

Parenthesis

We use (and) for parenthesis.

LeftParen ::= "("
RightParen ::= ")"

White Spaces

It is often convenient to use “white spaces” (spaces, tabs, and blank lines) to set apart the formulae for
greater readability. These characters MUST be ignored when processing the text input.

LTLf

In this section, we specify a grammar for LTLf.

Atoms

An LTLf formula is de�ned over a set of atoms. In this context, an atom formula is de�ned by using
the Atom regular language de�ned above:

LTLAtom ::= Atom

Temporal operators

Here we specify the regular languages for the temporal operators.

(Weak) Next: X ;
Strong Next: X[!] ;
(Strong) Until: U ;
Weak Until: W ;
(Weak) Release: R , V ;
Strong Release: M ;
Eventually: F ;
Always: G ;

In EBNF format:

WeakNext ::= "X"
Next ::= "X[!]"
Until ::= "U"
WeakUntil ::= "W"
Release ::= "R" | "V"
StrongRelease ::= "M"
Eventually ::= "F"
Always ::= "G"

Special Formulae

Special LTLf formulae are:

last , meaning “the last step of the trace”, semantically equivalent to X(false) ;
end , meaning “the end of the trace”, semantically equivalent to G(false) .

In EBNF format:

Last ::= "last"
End ::= "end"

Grammar

ltl_formula ::= LTLAtom
 | PropBooleans
 | LogicBooleans
 | Last
 | End
 | LeftParen ltl_formula RightParen
 | Not ltl_formula
 | ltl_formula And ltl_formula
 | ltl_formula Or ltl_formula
 | ltl_formula Impl ltl_formula
 | ltl_formula Equiv ltl_formula
 | ltl_formula Xor ltl_formula
 | ltl_formula Until ltl_formula
 | ltl_formula WeakUntil ltl_formula
 | ltl_formula Release ltl_formula
 | ltl_formula StrongRelease ltl_formula
 | Eventually ltl_formula
 | Always ltl_formula
 | WeakNext ltl_formula
 | Next ltl_formula

For the semantics of these operators, we refer to [3] for the �nite setting.

Precedence and associativity of operators

The precedence and associativity of the LTL operators are described by the following table (priorities
from lowest to highest). For brevity, aliases for boolean operators are omitted.

associativity operators

right -> , <->

left ^

left |

left &

right U , W , M , R

right F , G

right X , X[!]

right !

LDLf

In this section, we specify a grammar for LDLf.

Temporal operators

LDLf supports two temporal operators:

Diamond operator: <regex>ldl_formula ;
Box operator: [regex]ldl_formula ;

regex will be presented in the next paragraph.

LeftDiam ::= "<"
RightDiam ::= ">"
LeftBox ::= "["
RightBox ::= "]"

In EBNF format, an LDLf formula is de�ned as follows:

ldl_formula ::= TT
 | FF
 | LeftParen ldl_formula RightParen
 | Not ldl_formula
 | ldl_formula And ldl_formula
 | ldl_formula Or ldl_formula
 | ldl_formula Impl ldl_formula
 | ldl_formula Equiv ldl_formula
 | LeftDiam regex RightDiam ldl_formula
 | LeftBox regex RightBox ldl_formula

Regular Expressions

In this section, we de�ne the regular expression used by Diamond and Box operators.

A regular expression is de�ned inductively as:

a propositonal formula over as set of propositional atoms.
a test expression: `ldl_formula?
a concatenation between two regular expressions: regex_1 ; regex_2
a union between two regular expressions: regex_1 + regex_2
a star operator over a regular expression: regex*

The symbols are listed below:

Test ::= "?"
Concat ::= ";"
Union ::= "+"
Star ::= "*"

The EBNF grammar for a regular expression is:

propositional ::= Atom
 | True
 | False
 | LeftParen propositional RightParen
 | Not propositional
 | propositional And propositional
 | propositional Or propositional
 | propositional Impl propositional
 | propositional Equiv propositional
 | propositional Xor propositional

regex ::= propositional
 | LeftParen regex RightParen
 | regex Test
 | regex Concat regex
 | regex Union regex
 | regex Star

For the semantics of the operators, we refer to [3].

Precedence and associativity of operators

The precedence and associativity of the LDL operators are described by the following table (priorities
from lowest to highest). For brevity, aliases for boolean operators are omitted.

associativity operators

right -> , <->

left ^

left |

left &

N/A <> , []

left ;

left +

left *

left ?

right !

PLTLf

In this section, we specify a grammar for PLTLf.

Atoms

A PLTLf formula is de�ned over a set of atoms. In this context, an atom formula is de�ned by using
the Atom regular language de�ned above:

PLTLAtom ::= Atom

Temporal operators

Here we specify the regular languages for the temporal operators.

Before: Y ;
Since: S ;
Once: O ;
Historically H

In EBNF format:

Before ::= "Y"
Since ::= "S"
Once ::= "O"
Historically ::= "H"

Special Formulae

Special PLTLf formulae are:

first , meaning “the �rst step of the trace”, semantically equivalent to !B(true) ;
start , meaning “the start of the trace”, semantically equivalent to H(false) .

In EBNF format:

First ::= "first"
Start ::= "start"

Grammar

pltl_formula ::= PLTLAtom
 | PropBooleans
 | LogicBooleans
 | First
 | Start
 | LeftParen pltl_formula RightParen
 | Not pltl_formula
 | pltl_formula And pltl_formula
 | pltl_formula Or pltl_formula
 | pltl_formula Impl pltl_formula
 | pltl_formula Equiv pltl_formula
 | pltl_formula Xor pltl_formula
 | pltl_formula Since pltl_formula
 | Once pltl_formula
 | Historically pltl_formula
 | Before pltl_formula

For the semantics of these operators for the �nite setting, we refer to [6].

Precedence and associativity of operators

The precedence and associativity of the LTL operators are described by the following table (priorities
from lowest to highest). For brevity, aliases for boolean operators are omitted.

associativity operators

right -> , <->

left ^

left |

left &

right S

right O , H

right B

right !

PLDLf

In this section, we specify a grammar for PLDLf.

Temporal operators

PLDLf supports two temporal operators:

Backward diamond operator: <<regex>>pldl_formula ;
Backward box operator: [[regex]]pldl_formula ;

regex is the same as de�ned for LDLf.

LeftBackwardDiam ::= "<<"
RightBackwardDiam ::= ">>"
LeftBackwardBox ::= "[["
RightBackwardBox ::= "]]"

In EBNF format, a PLDLf formula is de�ned as follows:

pldl_formula ::= TT
 | FF
 | LeftParen pldl_formula RightParen
 | Not pldl_formula
 | pldl_formula And pldl_formula
 | pldl_formula Or pldl_formula
 | pldl_formula Impl pldl_formula
 | pldl_formula Equiv pldl_formula
 | LeftBackwardDiam regex RightBackwardDiam pldl_formula
 | LeftBackwardBox regex RightBackwardBox pldl_formula

For the semantics of the operators, we refer to [6].

Precedence and associativity of operators

The precedence and associativity of the LDL operators are described by the following table (priorities
from lowest to highest). For brevity, aliases for boolean operators are omitted.

associativity operators

right -> , <->

left ^

left |

left &

N/A <<>> , [[]]

left ;

left +

left *

left ?

right !

Future work

In future versions of this standard, we would like to add:

Spot -like syntactic sugars for regular expressions (SERE) and temporal operators [14,24];
Compatibility with the PSL standard [13];

Support full Unicode characters, so to use UTF-8 characters like (U+25CB) for the Next operator
and (U+25C7) for the Eventually operator etc. as alternative symbols.

∘

⋄

References

1. A Survey on Temporal Logics
Savas Konur
(2010-05) http://arxiv.org/abs/1005.3199v3

2. The temporal logic of programs
Amir Pnueli
18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (1977-10)
http://dx.doi.org/10.1109/sfcs.1977.32
DOI: 10.1109/sfcs.1977.32

3. Linear Temporal Logic and Linear Dynamic Logic on Finite Traces
Giuseppe De Giacomo, Moshe Y. Vardi
Proceedings of the Twenty-Third International Joint Conference on Arti�cial Intelligence (2013)
http://dl.acm.org/citation.cfm?id=2540128.2540252
ISBN: 978-1-57735-633-2

4. The rise and fall of LTL
Moshe Y Vardi
GandALF (2011)

5. LTLf/LDLf Non-Markovian Rewards
Ronen Brafman, Giuseppe De Giacomo, Fabio Patrizi
(2018) https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17342

6. Pure-Past Linear Temporal and Dynamic Logic on Finite Traces
Giuseppe De Giacomo, Antonio Di Stasio, Francesco Fuggitti, Sasha Rubin
Twenty-Ninth International Joint Conference on Arti�cial Intelligence and Seventeenth Paci�c Rim
International Conference on Arti�cial Intelligence IJCAI-PRICAI-20 (2020-07)
http://dx.doi.org/10.24963/ijcai.2020/690
DOI: 10.24963/ijcai.2020/690 · ISBN: ['9780999241165']

7. Synthesis for LTL and LDL on Finite Traces
Giuseppe De Giacomo, Moshe Y. Vardi
Proceedings of the 24th International Conference on Arti�cial Intelligence (2015)
http://dl.acm.org/citation.cfm?id=2832415.2832466
ISBN: 978-1-57735-738-4

8. Automatic Veri�cation of Finite-State Concurrent Systems Using Temporal Logic
Speci�cations
E. M. Clarke, E. A. Emerson, A. P. Sistla
ACM Trans. Program. Lang. Syst. (1986) https://doi.org/10.1145/5397.5399
DOI: 10.1145/5397.5399

9. Planning for temporally extended goals
Fahiem Bacchus, Froduald Kabanza
Annals of Mathematics and Arti�cial Intelligence (1998)

10. Rewarding behaviors
Fahiem Bacchus, Craig Boutilier, Adam Grove

http://arxiv.org/abs/1005.3199v3
http://dx.doi.org/10.1109/sfcs.1977.32
https://doi.org/10.1109/sfcs.1977.32
http://dl.acm.org/citation.cfm?id=2540128.2540252
https://worldcat.org/isbn/978-1-57735-633-2
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17342
http://dx.doi.org/10.24963/ijcai.2020/690
https://doi.org/10.24963/ijcai.2020/690
https://worldcat.org/isbn/%5B'9780999241165'%5D
http://dl.acm.org/citation.cfm?id=2832415.2832466
https://worldcat.org/isbn/978-1-57735-738-4
https://doi.org/10.1145/5397.5399
https://doi.org/10.1145/5397.5399

Proceedings of the National Conference on Arti�cial Intelligence (1996)

11. Enacting declarative languages using LTL: avoiding errors and improving performance
Maja Pešić, Dragan Bošnački, Wil MP van der Aalst
International SPIN Workshop on Model Checking of Software (2010)

12. The ForSpec temporal logic: A new temporal property-speci�cation language
Roy Armoni, Limor Fix, Alon Flaisher, Rob Gerth, Boris Ginsburg, Tomer Kanza, Avner Landver, Sela
Mador-Haim, Eli Singerman, Andreas Tiemeyer, others
International Conference on Tools and Algorithms for the Construction and Analysis of Systems
(2002)

13. IEEE Standard for Property Speci�cation Language (PSL)
IEEE
IEEE (2010) http://dx.doi.org/10.1109/ieeestd.2010.5446004
DOI: 10.1109/ieeestd.2010.5446004 · ISBN: ['9780738162553']

14. Spot’s Temporal Logic Formulas
Alexandre Duret-Lutz
Tech. rep. Available online: https://spot.lrde.epita.fr/tl.pdf (2016)

15. Spot 2.0A Framework for LTL and 19970\\backslash 19970-Automata Manipulation
Alexandre Duret-Lutz, Alexandre Lewkowicz, Amaury Fauchille, Thibaud Michaud, Etienne Renault,
Laurent Xu
International Symposium on Automated Technology for Veri�cation and Analysis (2016)

16. Owl: A Library for omega-Words, Automata, and LTL
Jan Kretinsky, Tobias Meggendorfer, Salomon Sickert
Automated Technology for Veri�cation and Analysis - 16th International Symposium, ATVA 2018,
Los Angeles, CA, USA, October 7-10, 2018, Proceedings (2018) https://doi.org/10.1007/978-3-030-
01090-4\textbackslash{}_34
DOI: 10.1007/978-3-030-01090-4\textbackslash{}_34

17. The SPIN Model Checker: Primer and Reference Manual
Gerard Holzmann
Addison-Wesley Professional (2011)
ISBN: 0321773713

18. Symbolic LTLf Synthesis
Shufang Zhu, Lucas M. Tabajara, Jianwen Li, Geguang Pu, Moshe Y. Vardi
Proceedings of the Twenty-Sixth International Joint Conference on Arti�cial Intelligence (2017-08)
http://dx.doi.org/10.24963/ijcai.2017/189
DOI: 10.24963/ijcai.2017/189 · ISBN: 9780999241103

19. Hybrid Compositional Reasoning for Reactive Synthesis from Finite-Horizon Speci�cations
Suguman Bansal, Yong Li, Lucas M. Tabajara, Moshe Y. Vardi
The Thirty-Fourth AAAI Conference on Arti�cial Intelligence, AAAI 2020, The Thirty-Second
Innovative Applications of Arti�cial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium
on Educational Advances in Arti�cial Intelligence, EAAI 2020, New York, NY, USA, February 7-12,
2020 (2020) https://aaai.org/ojs/index.php/AAAI/article/view/6528

20. RiccardoDeMasellis/FLLOAT
Riccardo De Masellis

http://dx.doi.org/10.1109/ieeestd.2010.5446004
https://doi.org/10.1109/ieeestd.2010.5446004
https://worldcat.org/isbn/%5B'9780738162553'%5D
https://doi.org/10.1007/978-3-030-01090-4/textbackslash%7B%7D/_34
https://doi.org/10.1007/978-3-030-01090-4/textbackslash%7B%7D/_34
https://worldcat.org/isbn/0321773713
http://dx.doi.org/10.24963/ijcai.2017/189
https://doi.org/10.24963/ijcai.2017/189
https://worldcat.org/isbn/9780999241103
https://aaai.org/ojs/index.php/AAAI/article/view/6528
https://github.com/RiccardoDeMasellis/FLLOAT

(2015) https://github.com/RiccardoDeMasellis/FLLOAT

21. Reinforcement learning for LTLf/LDLf goals: Theory and implementation
Marco Favorito
Master’s thesis. DIAG, Sapienza Univ. Rome (2018)

22. LTLf2DFA
Francesco Fuggitti
WhiteMech (2018) https://github.com/whitemech/LTLf2DFA

23. Compositional Approach to Translate LTLf/LDLf into Deterministic Finite Automata
Giuseppe De Giacomo, Marco Favorito
Proceedings of the International Conference on Automated Planning and Scheduling (to appear)
(2021)

24. A high-level LTL synthesis format: TLSF v1. 1
Swen Jacobs, Felix Klein, Sebastian Schirmer
arXiv preprint arXiv:1604.02284 (2016)

25. The syntax and semantics of the proposed international algebraic language of the Zurich
ACM-GAMM conference
John W Backus
Proceedings of the International Comference on Information Processing, 1959 (1959)

26. Extensible Markup Language (XML) 1.0 (Fifth Edition)
W3C
(2008) https://www.w3.org/TR/xml/

27. ISO/IEC 14977: 1996 (E)
Extended BNF ISO
ISO: Geneva (1996)

28. Don’t Use ISO/IEC 14977 Extended Backus-Naur Form (EBNF)
David Wheeler
(2020) https://dwheeler.com/essays/dont-use-iso-14977-ebnf.html

29. BNF was here: what have we done about the unnecessary diversity of notation for syntactic
de�nitions
Vadim Zaytsev
Proceedings of the 27th Annual ACM Symposium on Applied Computing (2012)

30. Key words for use in RFCs to Indicate Requirement Levels
Scott Bradner
RFC2119 (1997)

31. Information technology—Universal coded character set
ISO/IEC
International Organization for Standardization (2020)

32. The Unicode Standard, Version 13.0.0
The Unicode Consortium
(2020) https://www.unicode.org/versions/Unicode13.0.0/
ISBN: 978-1-936213-26-9

https://github.com/RiccardoDeMasellis/FLLOAT
https://github.com/whitemech/LTLf2DFA
https://www.w3.org/TR/xml/
https://dwheeler.com/essays/dont-use-iso-14977-ebnf.html
https://www.unicode.org/versions/Unicode13.0.0/
https://worldcat.org/isbn/978-1-936213-26-9

33. Semantic Versioning for Documents 1.0.0
Nils Tekampe
SemVerDoc (2018) https://semverdoc.org/semverdoc.html

34. Semantic Versioning 2.0.0
Tom Preston-Werner
Semantic Versioning (2011) https://semver.org/

1. You can get the sources of this document at this repository: https://github.com/marcofavorito/tl-
grammars↩

https://semverdoc.org/semverdoc.html
https://semver.org/
https://github.com/marcofavorito/tl-grammars

